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Correlation functions near modulated and rough surfaces
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In a system with long-ranged correlations, the behavior of correlation functions is sensitive to the presence
of a boundary. We show that surface deformations strongly modify this behavior as compared to a flat surface.
The modified near surface correlations can be measured by scattering probes. To determine these correlations,
we develop a perturbative calculation in the deformations in height from a flat surface. Detailed results are
given for a regularly patterned surface, as well as for a self-affinely rough surface with roughness egponent
By combining this perturbative calculation in height deformations with the field-theoretic renormalization-
group approach, we also estimate the values of critical exponents governing the behavior of the decay of
correlation functions near a self-affinely rough surface. We find that for the interacting theory, a large enough
{ can lead to a different surface critical behavior. We also provide scaling relations between roughness induced
critical exponents for thermodynamic surface quantities.

DOI: 10.1103/PhysRevE.65.046121 PACS nuner05.70.Jk, 68.35.Rh, 68.35.Ct, 64.60.Fr

I. INTRODUCTION fluid environments. For instance, at temperatures between
the wetting temperatur€,, of the corresponding planar sub-

In a material with long-ranged correlations, such as a ligstrate and the critical temperatufe of the bulk fluid, one
uid crystal or a superfluid, any local perturbation has influ-can manipulate the adsorption properties of the fluid on the
ence over large distances. As a result, local properties, sudubstrate by endowing the surface with periodic patterns of
as magnetization density, as well as correlation functions arearious shapeg20,21].
modified on approaching a surfac@ritical behavior near (ii) Surfaces or interfaces can be naturally rough, e.g., due
surfaces or defects, which is quite different from the bulk,to growth, fracture, or erosion. One possibility is that the
has been extensively studied by means of the field-theoretisubstrate has &actal surface, so that the surface ar8a
renormalization-group approagh—4J. In this case, the local grows as a power of the projected area, iSe-,L% wherelL
order paramete® is perturbed near the surface up to a dis-is a characteristic length ardi is the fractal dimension of
tance set by the diverging bulk correlation length-|T  the surface. Recently, the scaling behavior of correlation
—T.| ™", whereT, is the bulk critical temperature. Theoret- functions in a critical system in two dimensions near the
ical predictions for surface criticality have been tested ex{ractal boundary of a random walk, for whiah=4/3, has
perimentally[5-9] and in simulation§10,11]. In particular, been studied by methods of quantum gray22] and con-
the grazing incidence of x rays and neutr¢8khas become formal invariance[23]. Another possibility is that the sub-

a standard tool for probing critical behavior near surfacestrate has &elf-affinesurface, for which the surface area is
and interface$§5—8|. For instance, the decay of the two-point proportional to the projected area. In this case the height
correlation function has been measured close to the surfadkictuations are characterized by a roughness expotient
of a FgAl crystal near its continuous order-disorder transi-with 0</<1, so that ¢h)2~L2¢, where éh is a typical
tion by the method of grazing incidence of x ra\id. The  height fluctuation over a distande Self-affine scaling is
phenomenon of critical adsorption near columnar defetits predicted by many numerical and analytical models of sur-
has apparently been observed by small angle scattering ¢dice growth[24,25, and is also observed in a number of
light in a NH,Br crystal near a continuous structural phaseexperiments[26]. A liquid-vapor interface, which exhibits
transition[12]. rippled configurations due to the occurrence of capillary

Most theoretical investigations so far have been restrictesvaves, is another realization of a self-affine rough surface
to flat surfaces. This is justified to a certain degree, sincd27]. An example where such an interface confines a critical
microscopic deviations from this idealized picture such assystem is given by the interface between ligfiite near the
terraces of monoatomic height do not change the universalormalfluid-superfluid transition and its noncritical vapor,
surface critical behavidrl3,14]. However, for deviations on which occurs in a recently used experimental setup in which
mesoscopic length scales, new phenomena are expectade Casimir force in a critical system is measuf2é] (see
Such deviations can be divided into two classes. also Ref[29]).

(i) Advanced experimental methods of nanoscience such In a previous pap€i30], we showed that the shape of the
as x ray[15], guided growth16], and nanosphere lithogra- surface has a distinct influence on the properties of an adja-
phy [17], allow one to endow surfaces with specific, regularcent medium with long-range correlations. Here we demon-
geometrical patterns down to the nanometer scale. Thesdrate this in more detail for two-point correlation functions
structures hold much promise for applications towards nanonear a critical point of the medium, for both caggsand (i)
chips[18] or optoelectronic devicdd9]. The surface modu- outlined above. Apart from Appendix B, we choose the Di-
lations also offer a wide range of possible applications inrichlet boundary conditiomb =0 at the surface, which rep-
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resents the so-calledrdinary surface universality class in (. 2) =y, )

case of a flat surface, and is usually appropriate for magnets, 2 W

binary alloys near a continuous order-disorder transition, and ‘
|

®

>

8

r

L 4
“He near the normalfluid-superfluid transitiph,2]. In Ref. 5
[31], the influence of surface roughness on the fluctuation heo
properties of wetting films, and on the demagnetizing factor .
of a thin magnetic film, have been studied. X

In order to study the effects of the surface shape, we de-

\{elop'a perturbative _expansion of ;wo-poin.t correlation fung- FIG. 1. Position vectors=(r,,z) andr’=(r! ,z') of the two-
tions in th_e deformations of the height _proflle. The method is oint correlation function in the critical gyster‘llw located above and
the pgth integral approach used previously to calculate fregounded by a deformed surface. The surface profile is described by
enelrgles[32], "?‘”‘?' in the Co,n_teXt of the dynam[63] and the height functiorh(x), and the vertical distances ofandr " from
static[34] Casimir effect. Initially for a Gaussian field, the the surface are given by=z—h(r,) and &' =z’ —h(r}), respec-
calculations are carried out to second order in the deformayyeyy,
tions. The first order results can also be derived by means of
the stress tensor in conjunction with a different type of Shortevendominate giving rise to a different surface critical be-
distance expansiofsee Appendix B and hold quite gener-

ally for any critical system bounded by a surface with eitherhaVior' However, for th&¥ model in two dimensions, below
(a Dirichlet boundary conditionsb=0, or (b) boundary the Kosterlitz-Thouless temperature, we again find that the

conditions that break the svmmetryv of the order aramete?urface correlations fall off with the simple relative factor of
y y P r 219 as compared to a flat surfadine).

near the surface. In the latter case, the leading singular be- The results for correlation functions can also be related to

havior can be obtained by settig=c> at the surfape, cor- thermodynamic quantities. To this end, we introduce distinct
responding to thextraordinaryor normal surface universal- fields hy andh, in the bulk and close to the surface, respec-

lty class, describingritical adsorption of a binary liquid tively, and propose a scaling ansatz for the leading singular
mixture on the surface of a substrate or the interface between Y prop 9 9 9

the critical liquid and its noncritical vapdi,2,9. The sec- part of th? surface _freg energ(;s/inpgar prolected 4. By
ond order results are particularly useful for cases in whicHaking suitable derivatives offs g with respect toh;, and
the first order contributions vanigisee below: hs, we then obtain scaling relat|0n§ for a variety of _crmcal
The diffuse scattering of x rays and neutrons at grazingXPonents related to thgrmodyngmm surface quantities.
incidence due to the modified correlations appears in addi- 1 Nne rest of the paper is organized as follows. In Sec. Il we
tion to what would be observed if the surface was separatinf§fitroduce the geometry, and develop the formalism for the
two homogeneous medif85]. The modified correlations perturbatlve_: calculation of correlation functions for a_free
may thus provide an additional and indirect means of char(Gaussianfield theory. In Secs. Ill and IV we then consider
acterizing the surface profile. This may be of value wher@ regularly pa_tterned surface and as_elf—afflnely rpugh surface
other techniques are not possible, as in the case of the inté) more detail. In Sec. V we combine the previous results
rior surface of a glass, or an internal crack, whereas scatteWith the RG, and qbtam results for su'rface (_:rltlcal exponents.
ing from a critical fluid or binary alloy coating the surface !N Sec. VI we consider th¥Y model. Finally, in Sec. VII, we
may be feasible. Already at the first order, the two-pointdraW our cont_:lusmn_s and outline some pos§|ble extensions
correlation functions track the profile from the substrateOf OUr paper; in particular, we relate our previous results for
with a modulation that decreases with the distance of the tw§orrelation functions to thermodynamic surface quantities
points from the surface. This leads to explicit predictions forVia scaling relations. Some technical details are left for Ap-
the structure factor, as a function of the lateral wave vectoPendices A—C. In Appendix B, for instance, we introduce a
transfer, for a modulated surface. different type of short-distance expansion for the stress ten-
For self-affinely rough surfaces, second order calculation§©'-
are necessary, as the first order results vanish on average. In
this context, the surface roughness is an example of
guenched randomness. For a massless Gaussian field, we
find the expected result that self-affine roughness leads to We consider a manifold) with the shape of a deformed
subleading corrections to the decay of two-point correlatiorsurface. Each point on the manifold is represented by a vec-
functions, which at a scale are smaller by a factor of tor X(y)=[X*(y);nx=1,...d]; a D-dimensional manifold}
r—2(=9 than the leading contribution coming from a flat embedded ind-dimensional space is parametrized ky
surface. Typical critical systems, however, are described by & (y,,...,yp). In the absence of overhangs and inlets, the
non-Gaussiatfiinteracting field theory. In this case, the cor- surface profile can be described by a single-valued height
relations are calculated perturbatively in a double expansiofunctionh(y), wherey spans alp =d— 1)-dimensional base
in the deformations and in the strength of the interaction, anglane(see Fig. 1L The parametrization of the surface is thus
the results interpreted with the aid of the renormalizationX(y)=(y,h(y)). Position vectors are decomposed accord-
group(RG) in 4—¢ dimensions. We find that the subleading ing to r =(r,,z), wherer, comprises thdb=d—1 compo-
corrections now fall off with a slower power as compared tonents parallel to the surface, amds the distance from the
the Gaussian case and, surprisingly, for a sufficiently Igrge base plane. The vertical distance offrom the surface is

Il. GEOMETRY AND FREE FIELD THEORY
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given by =z—h(r,) (see Fig. 1L We denoted-dimensional Equation(2.3) is d_ifficult to ev_aluate in general. To pro-
vectors with underlined letters, arib-dimensional vectors ceed, we now consider the height profii¢x) as a small
with boldface letters. perturbation, and expan@(r;r') in a seriesGy+ G+ G,

Fluctuations in the critical system located above the sur<+--- in powers ofh up to second order, under the constraint
face will be described by an-component order parameter thatzandz' are kept fixed. The lowest order result,
field ®(r)=(Py(r),....P,(r)). We consider the statistical

Boltzmann weight~#" with standard Hamiltoniaf,2], Go(r;r")=Gy(ry,z;r| ,2')—Gp(ry,z;r; ,—2') (2.6
1 7o Ug de
— | qael = 2, 7052, 10 522 _ o o
BH{(I)}—de r[Z(VCI)) + 5 P +4! (P24, —J’ (ZW)DGXF['D (ry=r190(p;z,2")
(2.1 2.7

where 7o~ T—T, andu, is the strength of thé* interac-  with [see Eq.(2.4)]
tion. In this section, we study the Gaussian theory, for which
Up=0. The volumeV consists of the space available to the
critical system. The above expression must be supplemented
by a boundary condition on the surface. We choose the Di-
richlet boundary conditionb =0, representing the ordinary corresponds to a flat surface, and can be obtained by the
surface universality class. In this case, for 1 the order method of images[1,2]. The bulk correlation function
parameter® can represent the magnetization in a uniaxialG,(r;r’) decays ag (4~2*" for large separations=|r
ferromagnet or the deviation of the composition in a binary—r’|, where the bulk critical exponentis given by»=0 in

alloy from the critical composition, fon=2 the magnetiza- the Gaussian theory. In contrast, if both points remain close
tion in aXY magnet or the superfluid order parametefidé  to the surfaceG(r;r') decays as ~(4=2*7), wherey, is a

near the normalfluid-superfluid transition, and for3 the  surface critical exponent given by,=2 in the Gaussian

1 , ,
Go(pizz))= gole P 2g

magnetization in a Heisenberg ferromagfieg]. theory[1,2].
The Gaussian two-point correlation functiéor propaga- The first order result is given by87]
tor)
<(D|(£)¢J(£,)>:5|]G(LL,)! UOZO, (22) G1(£,£/)2—4J dDXJ(rH,X,Z)h(X)J(I’H’ ,X;Z/), (29)

where the bracket§) denote the thermal average according,yith
to Eqg. (2.1) with uy=0, can be calculated using functional
integral method$32,33. The details of this calculation are

1 d°
left to Appendix A. The result is J(x,y;2)= ff (277;)D elP-xYg=pzZ, (2.10
G(r;r’)=Gb(r;r’)—f dDXf dPy Note thatJ(x,y;z—0")=35°(x—y), where 6°(x) is the
o o delta function inD dimensions. Already the result at this
X Gp(r:x,h(x))M(x,y)Gp(r":y,h(y)), order tracks the profila(x) of the surface. For example, for
- - 23 p=|r,—r/|— with zandz' fixed, the above results f,
23 andG; imply the behaviorsee Appendix B
where G(rir) ~[L-AMD -AG)]p @2 m, 211
d°p 1 ) ) .
Gb(r;r’)zfﬁexmp-(ru—r”’)]z—e plz=2'| up to terms of ordert{/z)- and (/z')“. Thus, the leading
o (2m) P (2.4 power law is the same as for a flat surface, but the amplitude

is modulated by the surface deformations in the vicinity of

with p=|p|, is the Gaussian propagator in unbounded bulk,a”drlf by the dimensionless and universal amplitude,

and the kernelM(x,y) is the inverse of the kernel B h(x)
Gp(x,h(x);y,h(y)). ie., A([)=¥f dOx—Ax-1,,2), (212

J dPyM(x,y)Gp(y,h(y);y",h(y")) = 8°(x—y"). where for the present Gaussian casgr- 7»=2 and A(x
(2.5  —r,2)=2J(x,r;;2). Equations(2.11) and (2.12 are valid
quite generally, and, in particular, also for the boundary con-
While the above resulfavith an appropriately modified bulk dition representing critical adsorption of a binary liquid mix-
propagator in Eq(2.4)] are generally valid, we focus on the ture (see Appendix B The explicit form of A(x,z), how-
behavior of the correlation functions at the bulk critical ever, depends on the surface universality class considered.
point, i.e., forT=T., where correlations are strong¢36]. The second order result reads

046121-3



ANDREAS HANKE AND MEHRAN KARDAR PHYSICAL REVIEW E 65 046121

el — D D I Lt ’ J ! '
Ga(rir )—fd de yhO)h(y)C(r,r";x,y) Gi(rir')=—=[h(r)=h(r))]==Gu(r;. & ,8")
2.13
with +2f d®xJ(ry,x;8)[h(r))+h(r|)
C(r,r';x,y)=—8J(r;,x2)3(r| ,y;z' )K(x,y;z—07) —2h(x)]3(r| ,x;8"), (2.22
2.14

Gu(rir)=3[K(ry.rj:[8= &) +K(ry,r; 8+ 8)1h(ry)

and
R —h(r) 1+ [ dx [ dPyatr, xMoxy)
P _
K(x,y;z =—f e'PxYpe Pz, 2.1 C
YD=3 ] Gap P (219 X[h()—h(y)123(r] y; &)
In a scattering experiment with grazing incidence, one _2“ dPxK(ry,x: 8)[h(r;)—h()12(r! x;8")
probes the lateral structure fact®(p,zp’,z’) [3,6,35, e ! L

which is defined by the Fourier transform
+(rer’)

. (2.23

G(r'r’)=f d’p eip'ruj %’ e 1is(p,z;p’.2')
== (2m)P (2m)° e The first line in Eq(2.22 is valid for 8’ < 8, andM(x,y) in
(2189  Eq.(2.23 is defined as in Eq(2.5) but with h(y)=0. The
kernelsJ andK are given by Eqgs(2.10 and(2.15, respec-

Using the Fourier transform of the height profile tively. The contributionG, in Eq. (2.21) corresponds to the
4Pk Gaussian propagator for a half-space bounded by a flat sur-
h(y):j (Zﬁ)oeik'yﬁ(k)v 2.17) face with Dirichlet boundary conditions, i.e.,

dPp
R A Go(r;r’ =f—ex ip-(ry—r, 18,6
with A(—k)=h(k)*, we obtain an equivalent expansi&n o130 = | gyp &HLIP- (= 11)100(pi0,57)
=Sy+S;+S,+..., with (2.24)
1 with g, from Eq. (2.8).
So=55 e P e P ) 2m)Pa(p+p'),
p I1l. MODULATED SURFACES

(2.18
We now apply the results of the preceding section to pat-
S,=—e P P ZR{(p+p), (2.19  terned surfaces. The simplest example is provided by an
uniaxial sinusoidal modulation with wavelengthalong, say,
dPk the x direction, i.e.,
=—e—pZe—p’2’f —k|h(k)h(p+p’ —k).
> (zmyp P~ KInCOR(p+p ()2 2 h(x,Y)=acog2mx/\). 3.0

The other D—1) directions along the surface, denoted by

For a rough surface, the deviations in height from a planal | remain translationally invariant. The Fourier transform of
surface have no upper bound. In this case, it is convenient tthis height profile is

carry out the expansion ih(x) for fixed vertical distances

8=z—h(r)) andé’=z—h(r|), instead of for fixedz andz’ - a ~ 2 2m
(see Fig. 1 This represen{ation facilitates the perturbative "(K)= E<27T)D5D 1(K)[5( k™ T) +5( kot T”
analysis of the field theory described by E.1) (see Sec. (3.2
V). Moreover, in view of probing correlation functions lat-

eral to the substrate surface by grazing incidence scatteringherek is decomposed according ko= (k, ,K).

of x rays and neutron3,6,39, this representation is natural, ~ The nontrivial orders of the expansion@{r;r") in h for
since in these experimengsand 8’ show up as length scales fixed zandz’ are given by

which are set by the finite penetration depth of the x rays.

Writing G=Gy+G,+G,,+... where the subscripts 0, |, Gy(ry,z;ry,2')
I, indicate the corresponding order h(x) under the con- a dP
straint thats and 6’ are kept fixed, we find =— Ee2ﬂf”%'><’ f (27r§)D explip-(ry—r/)]e P*
Go(r;r")=Gy(ry, 81,8 )= Gy(ry, 81 ,—6"), 20
(2.21) Xex;{—p—(T,O) z'|+(rerp), 33
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Gy(ry,zr|,2") ing rise to diffuse scattering and thereby probing the critical
correlations close to the surfag®]. Since this diffuse scat-

_ a’? d°p : , 21 tering appears in addition to the contribution already present
- ZJ (zw)Dqu'p'(r“_rH)] P={ 0 away from criticality[35], it can, in principle, be separated
5 5 out by tuning the temperature deviatidn-T.. We assume
X e~ Pl P7 _ a_e4ﬂ—i/)\.x’f d”p thatb is much larger than the height of the deformations. In
4 (2m)P this case, the above expansion in the deformations results in
an expansion in powers ¢f/b<<1 for the elastic scattering

e P? cross section, which allows one to distinguish the corre-
sponding contributions via their intensities.

) 2
Xexr[lp-(r—rl’)]p—(T,O)

4
xex;{ —|p— (TO)

The second order results are particularly useful when
For p=|r,—r|—c, the leading power law ip is the same dealing with rough surfaces, where the quench averaged first
as for a flat surface, but the amplitude is modulated by thé@rder corrections vanish. Within the description using a
shape of the surface in the vicinity ofandr; . In particular, ~height functionh(x), self-affine roughness is characterized
the first order result in Eq3.3) is consistent with Eqg2.11) by the behavior
and(2.12. For z, z’<a, \ the correlations follow more or — 2
less the surface modulation. Interestingly, forz’>\, the [hOO)—h() 1~ [x=y[*,  [x=y|—=e, (4.2)

correlations that are sensitive to the modulation, i.e., depend . , :
S : C Where the overbar denotes averaging over self-affine realiza-
on \, decayexponentiallyin z/\. For instance, foe=2z" and

. [ [ ith 0<¢<1i -
2I\—s00, one has,~e~ 272 andG,~e~ 472 This ex- tions of the surface profile, aniwith 0<{<1 is the rough

ponential decay is due to the fact that the surface presith ness exponent. Without restriction of the generality we

o : hoose the coordinate system so th@t) =0. In the limit of
has a perfect periodic shape. In contradbaal perturbation ~ © . -
P P b bea! p short distancegx—y| it is reasonable to assume that the

on the surface would result in a perturbation of the correla: ; ; th. Thi b deled by the Fourier t
tions that decays only as a power law with the distance fronféjrr ace Is smooth. 1his can bé modeled by the Fourier trans-

the surface. )
The corresponding orders of the lateral structure factorare ———————=35 _
given by P ’ [h(x)—h(y)]?=w?® #|x-y|?

- de ip-(X=y)y—D+2-2{5—pA
Si(p,z;p’,2") X 2P e p e P\,

Z [+ (rer). (3.4 IV. ROUGH SURFACES

a 15!
:_EefpzefpZ(ZW)D(SD*l(P_FP/) (42)

While at large separations the above correlations grow as

2m m } |x—y|?¢, we have also introduced a cutoff lengttto regu-

2
PxtPx= 3 Pxt Pyt late the behavior of the surface at short distances, and an
3.5 overall amplitude lengtho. The length\ characterizes the
' crossover from the analytic behavior fx—y|<\ to the
L, behavior in Eq.(4.1) for |[x—y|>\. Apart from its physical
Sa(p.z;p".2") significance, the appearance of the finite crossover lergth
a2 ., e in Eqg. (4.2 is also essential within the present theoretical
=— Ze*pze*p Z2mPs° YP+P"){|p-— (TO) approach(see Sec. Y.
A characteristic feature of self-affine roughness is statisti-

X| 8 + 0

At 2 cal translational invariance, since the right-hand side of Eq.
X| 8| pxtpx— o) ot py) | +|p+ T’O) (4.2) depends on the distan¢e—y| only. This implies that
the averaged lateral structure factBris proportional to
, 4w , s°(p+p’), and depends om z', andp=|p| only. In order

X1 8| Pxt Pyt o=+ (it P |- (38t maintain translational invariance, it is convenient to ex-

press the results for the correlation functions in terms of the
These results indirectly characterize the surface in scatteringcal distance=z—h(r;) from the surface rather tha(see
experiments. For instance, the form 8f implies that the Fig. 1). The two-point correlation function must now vanish
incident wave vector componemt, is scattered tqp,=p, asdor ¢’ go to zero. On averaginG(r;r') over different
+27/\ while the other components pfremain unchanged. surface profiles, the contributioB, in Eg. (2.22 vanishes
The form of S, implies thatp, is scattered by #/\, 0, due toh(x)=0, and the contributiorG, in Eq. (2.23 be-
—4m/\. In a scattering experiment with grazing incidence,comes translationally invariant with respect to the lateral
the length scale perpendicular to the surface is set by theomponents; andr| . We thus introduce the lateral Fourier
depthb that the evanescent wave penetrates the sample, gitransform,
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- dPp _ For the interacting field theory, governed by E@G.1)
Gy(rir')= f WEXFIIP'(N—Y”')]%(P:& 3", with uy#0, standard perturbation theory can be applied to
(4.3 get the correlation function near a surface of arbitrary but
' fixed shape,
whereg,(p; ,8") can be read off from the right-hand side of , )
Eq.(2.23, i.e., (Pi(r)®;(r'))=8;G(r,r'";ug), (5.9
92(p; 6,8")=3[K(p,| 6= 8"|) + K(p, 6+ 8")] with
+K(p,0)e P+ K (p, e P n+2 u
(P.0) (p.9) Gg(r,r'iug) =G(r.r')— —— 70
—K(p,8")eP°. (4.4)
K(p,6) is the lateral Fourier transform  of XJ ddRG(L;B)G(B;B)G(B;L’HO(ug),
K(x,y;8)|h(x)—h(y)|? and we have used the fact that the v
lateral Fourier transform oMy(x,y)[h(x)—h(y)]? appear- (5.2

ing in the second line of Eq2.23 after averaging is given , o
by 4K(p,5=0). Using Eq.(4.2), K(p,8) can be expressed Where the Gaussian propagatG(r:r’) is given b,y Eq.
in terms of the convolution integral (2.3). We are interested in the behavior(@b;(r)®;(r')) in
the limit for which the distance betweenandr’ is much
Dk Dr220 i larger than one or both of the vertical distanéemnd s’ (see
) U(lp—kl,8)k e ", Fig. 1. If &' is small, say, it is helpful to consider the so-
(4.5 called surface operatof1,2]

IC(p,é):wz*ZgJ (Zd

where U(p,é)2 is the lateral Fourier transform of DL(r)=ad,P(r'), (5.3
K(X,y; )| x— iven

(y:d)lx=y)" given by whered,=[g(r/)] ¥4 d5—Vh(r/)- V] denotes the normal
derivative atr; on the surface, with the determinag(y)
=1+[Vh(y)]® of its induced metrigsee Eq(A10)]. In this
way one avoids to deal with the irrelevant lengthfrom the
In terms of the coordinates=(r, ), the above results im- outset. For correlations vertically away from the surface, i.e.,
ply that the leading power law behavior &(r;r’) for p  r;=r/, we are thus led to consider
=|r,—r |-~ is the same as for a flat surface. The corre-
sponding amplitude depends on the roughness, and is modi- (@i(N) D} (r))=8;G.(ry, 8 o). (5.9
fied by a factor of 1— x(w/\)2*~9] as compared to a flat _ _ , _
surface, whera >0 is a number of order unity. The sublead- 1he loop expansion &, (ry, 5;uo) is obtained by taking the
ing correction of ordeh? decays with the separatignwith normal derlvat_|ve at, of the right-hand side .Of Ed5.2.
an additional factor ofp~2(1-9 compared to the leading Up to now in this section we have considered a surface

term[see Eqs(5.16 and(5.17) in Sec. V fore =0] with arbitrary but fixed shape. In particular, foflat surface,
Note tha?g (F.J'(S 5') vaﬁishes foré‘—o or &' —.O as it the one-loop addition iy can be regularized and renormal-
2\M: & - -

should, according to the Dirichlet boundary condition at the'zed py m_|n|mal ;ub;tract!on of polesuwf4—d, Ie?ldlng .to
surface. This wouldhot be the case for=0 orz' =0 if we l0garithmic contributions in the separatios=|r —r'[. This

carried out the expansion i(x) with fixed z andz’. How- perturbative result can then be improved byT?G?_ resulting in
ever, the realization of the Dirichlet boundary condition for power laws inr with corresponding surface critical expo-

the Gaussian propagator is essential for the perturbatio ents{1,2]. For a self-affinely rough surface, the functign

theory of the field theory described b .1). Moreover, epends, Of. course, on the shape of this_ surface, i:e., on the
gz(p;)g, é') is an analytiz function foréggw Z)r s’ due to height functionh(x). However, by averaging over different

the finite crossover length in Eq. (4.5), which would oth- ~ Surface profiles, we expect that the averggedepends only
erwise be ill defined foh =0 if 5=0 andZ<1/2. on gross fe_atures character_mng the surface configurations,
and, in particular, becomes independent oflue to transla-
tional invariance. In the following we restrict ourselves to
surfaces that are rough on large distances, and to contribu-
In this section we consider the asymptotic scaling behavtions to G, up to second order im(x). According to Eg.
ior of the two-point correlation function near a self-affine (4.2 we conclude that in this case the amplitudeand the
rough surface for the-vector model at the bulk critical crossover lengthh are the only remaining relevant length
point. By combining our previous results with the field- scales characterizing the different surface configurations.
theoretic RG, we estimate the values of the corresponding In the next step, the resulting avera@e( §; w,\;ug) has
critical exponents, using a double expansion in the surfacé be renormalized. For our perturbative calculations we use
deformations and in the deviatian=4—d of the space di- dimensional regularization and renormalization by minimal
mensiond from the upper critical dimension. subtraction of poles im =4—d [38]. The reparametrizations

U(p,6)= e P (4.6

s 1 o D-1(1 5

V. INTERACTING THEORY
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Up=16m°u°Z,u (5.5 = + =t

r G r GO G'I G'II
and (a)
D =233 58 0O M
of the bulk parameteu, and the bulk field® in terms of r 5
their renormalized counterpartsand @, are not affected (b) O . O O
by the presence of the surface. H&g=1+ O(u) andZg + ~ 4+ X + Sy

=1+ O(u?) are the corresponding renormalization factors,

and p IS th? inverse length 'scale which determines the FIG. 2. (a) Representation of the full Gaussian propagator
renormalization-group flow. Since all SL_Jrface_s We averages(r:r'y in Eq. (2.3 and its expansion up to second ordethifx)
over are smooth on short distances, i.e., distances muqbcording to Egs(2.2)—(2.23. The number of ticks corresponds
smaller than the crossover lengthwe expect that the sur- g the order inh(x). (b) The second order ih(x) contribution to

fgce operatorb* is renormalized by the same renor_maliza- the one-loop integral in Eq5.2) decomposes into several parts.
tion factorZ, that would occur for dlat surface with Dirich-  The dashed lines connecting the ticks indicate averaging over dif-

let boundary conditions. Thus, ferent surface profiles, using E@.2). The cross corresponds to the
surface operatob*.

Ot =(ZpZ,) Vs, (5.7)
ith [2 tion, and for the reasoning leading to E§.11). This calcu-
with [2] lation gives also the explicit form of the scaling functibn
n+2u to first order ine. We confirm, in particular, that, (0) is a
Zi=1+ —— —+0O(u?). (5.9  finite number, and that the logarithmic contributions of
3 & f, (8/\) for 6/N—0o can be recast in the form of a power

Using the above reparametrizations the renormalized, i.el.‘:"w' €.,

pole-free, counterpart @, is given by f(SIN)— a+ B(SIN)Y. (5.12

a . . _5—15-125 ;. .
Gured &0 MU ) =272y TGL(8 0. AUo). (5.9 Whereas both amplitudes and 8 depend onw/\, the uni-

This perturbative result can be improved using standard€rsal exponeny is independent oiw/A and given by
renormalization-group methods, by noting tigat does not

depend onu. The asymptotic scaling behavior is governed = § nt2 e—(2—20)+O(&?). (5.13
by the infrared(long-distance stable fixed point for which 2n+8

L 3e ) Perpendicular correlations are obtained whemoves
u=u*=——2+0(s), (310 into the bulk, whiler’ remains close to the surface, i.6.,
—oo with &’ fixed (see Fig. L Equationg(5.4) and (5.1)—

andg, ., assumes the scaling form (5.13 then imply that the correlations decay as

Gy red 8@, \;U )~ @72 M0E (SN i e 1 a

| rer O @,\;U, ) 1( ) 6.19 (©UNDI(r))~ <=z + 727y (514

with the critical exponenty, for a flat surface. The scaling where the first term corresponds to a flat surface with
function f, is universal, but depends on the particular Way:l—%[(n+2)/(n+8)]s+(9(82) [1,2]. The second term

we have introduced the crossover lengtim Eq. (4.2). S'T‘CG describes the effect of self-affine roughness, with an ampli-
all surfaces we average over are smooth on short d|stancet§lde a depending onw, \, and ¢, and the new universal

f,(0;w/\) should be a finite numbeiin the following we

; exponent
suppress the dependence fof on w/\ for brevity). In the
other limit 5/\—o, the scaling functionf, (6/\) is ex- n+2
pected to exhibit a power law that reflects the self-affine D= —=(2-20)+1-2——e+0(&?).
structure of the surface. n+8
We have confirmed Ed5.11) explicitly to one-loop order (5.19

2g§g;c:jmg r;ZF%("IS(S) izsggstfgg g)j;p_ezgszlgn ?n%’%v)e:];gfgg Similarly, when both points remain close to the surface, i.e.,
using Eq.(4.2). Figure 2 illustrates this double expansion in # =1~ Til— with dand &’ fixed, the correlations decay
graphical form[39]. as

We indeed find that the 4/poles generated by the surface 1 ,
operatord* in Eq. (5.4) are removed by the renormalization (DD (r )~ i a 51
factor Z, in Eq. (5.8), which provides a test of our calcula- (Pi(DDi(r') pd=2tm " pd-247y (.19
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In this case the flat surface is governed hy=2—[(n by similar expressions as in E¢6.2), where nowg(r,r’)
+2)/(n+8)]e+O(e?), while self-affine roughness gives  satisfies the Neumann boundary condition at the sufée
) The final result

e+0(g?). (5.17

- n
77||—(2—2§)+2—4n+8

G(x,y;x",y")

The corrections due to roughness now decay with a slower B [(x=x")2+(y—y" I (x—Xx")2+(y+y")?]| "2
power as compared to the Gaussian case. Indeed, for a suf- 4yy’
ficiently large roughness exponetit these corrections can

even dominate the result for the flat surface. The borderline 6.9
roughness exponent i§ =1—3[(n+2)/(n+8)]e+O(¢?)  mplies the surface critical exponentg=27 and 7, =37,

for perpendicular, and a different value ¢f =1—3[(n  which fulfill the scaling relation 2, — 7,= » familiar from
+2)/(n+8)]e+O(e?) for parallel correlations. This is a the surface critical behavior afvector modelg1,2].

surprising result from a naive point of view since, duefto In order to study whether the nontrivial roughness depen-
<1, on larger and larger length scales a self-affine roughjence of correlations obtained in the preceding section is
surface looks more and more like a flat surface. Note that thig|so present here, we now consider a deformed suffimes
effect becomes only visible beyond the Gaussian approximawith the same boundary conditions as above. Similar steps as

tion, which corresponds te=0. By settinge=1 in the  outlined in Appendix A lead to the result for the two-point
above expressions, one obtains the corresponding estimatggrrelation function

for d=3.

G(r;r)=exd(r;r")=3T(r;n)—30(r';r")] (6.6
VI. TWO-DIMENSIONAL XY MODEL .
with
To compare the results of the preceding section with a

different interacting theory, we examine the correlations for a , o, , ) ,
two-dimensionalxg( modgl below the Kosterlitz-Thouless 1 (F:F")=Gb(r:1 )_f dxf dX’ G X (X)) M(X,X)
temperaturdg40]. The order parameter in this system is the ) ,
spin variables(r)=¢'""), where ¢(r) is the angle(phas¢ X dn Gp(r'; X(X")), 6.7
the spin makes with some reference axis. Even though the
phase fluctuations are described by a Gaussian model, no
trivial spin-spin correlations are obtained. Below the
Kosterlitz-Thouless temperature, tlie=2 dimensionalXY
model is well described by the spin-wave Hamiltonizue-
glecting vorticey[41]

lhere 9, denotes the normal derivative acting o@ and
(x,x") is the functional inverse of,d,' G (X(X),X(X")).
As in Sec. Il, we use the representati¥x) = (x,h(x)) in
terms of the height profil&(x), and expand>(r;r') up to
second order ifn. In particular, for a self-affinely rough sur-
face, we find, using Eq4.1), that the surface correlations
fall off with the simple relative factor of 2179 as com-
BH{ 0} = %KJ d?r(V 6)?, (6.)  pared to a flat surfacéine) (compare Sec. )/ We attribute
this to the Gaussian nature of the fluctuations in the phase
wherer =(x,y). Correlation functions decay as power laws angle 6(r), which are retained in the asymptotics of corre-
in this system. For instance, the two-point correlation funcdations fors(r).
tion in the unbounded plane is given p41,42
) ) VII. CONCLUSION AND OUTLOOK
Gp(r,r')=(e'" e 1) . .
- We have developed a path-integral formulation for the
=ex G(r;r") = 3Gp(rir) —3Gu(r’;r")] study of correlation functions in a system that is confined by
6.2 deformed or rough surfaces. Our results are generic for any
system with long-ranged correlations. Examples include sys-
with tems with a broken continuous symmetry, such as Xive
model below the Kosterlitz-Thouless temperature, or a nem-
, , atic liquid crystal, where the correlations are generated by
Gol(r;r')=(0(n)o(r'))=—5—-In(r/a), (6.3  the corresponding massless Goldstone modes; or critical flu-
ids or magnets described by thevector model at the bulk
wherer =|r—r’| anda is some lattice cutoff. This implies critical point, which has been mostly considered in this work.
- The surface deformations can consist of specifically de-
signed, regular patterns, or represent a self-affinely rough
surface. Some conclusions and possible extensions of this
paper are listed below.
where n=1/(27K). (i) Thermodynamic surface quantitie¥hermodynamic
If the plane is bounded by a free surfdtiee) aty=0, the  quantities can be obtained from derivatives of the free energy
correlation functionG(r,r') in the half-spaceg>0 is given  with respect to magnetic fields. To discuss surface behavior,

-n

, (6.9

r

Gy(r;r')= a
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TABLE |. Scaling relations between critical exponents relevant to a rough surface, as derived from Egs.
(7.1) and(7.2), in terms of the bulk critical exponentg v, y,=A/v, and the roughness exponénfor each
exponent in the left column there is a corresponding exponent for a flat sliff@&ehat would be denoted
without tilde (compare with Table Il in Ref(2]).

Critical exponent Conditions Scaling relation
7. .7, [Egs.(5.14 and (5.16)] 7=hp=hs=0 29, = nt+t2-2¢
¥s [Eq. (7.1)] 7#0, hg#0 Vo= 2(d—7,+2-2¢)
X~ 77 7#0 hy=hg=0 Yi=v(2—7,)
711’“|7'|7711 #0 h,=hs=0 Yu=v(1-7)
My~ (—1)Pr 7<0 hy,=hs=0 v

Bi=> (d=2+%+2-20)
m1~|hb|1/:$1 T= hs=0, hb¢0 731: VYbl:él
f,~ |hg| o1 7=h,=0, hs#0 1= Ys /By

we introduce distinct fieldb, andhg in the bulk and close to Table I. However, to regain the results in E¢s.14—(5.17),

the surface, respectively. Assuming that our underlying aswe have to use a value §f=1+[3n/2(n+8)]e +O(&?) in
sumption of the validity of an expansion i(x) holds, the Eq. (7.1), which is different fromy,=1—[3/(n+8)]e
results for the two-point correlation function are consistent+ 0(82)_ To motivate and justify this difference, we resort to
with the following form for the scaling of the leading singu- an analogy in which the rough surface is replaced with a

lar part of the surface free energy per projected area: collection of edges with @ossibly scale-depend@ristri-
, ~ bution of opening angles. Already for a single edge, describ-
(sing _ g—d+1 )4 £-2(1-0) s : . . L
9= gy(hyé¥o,hsé¥s) + & ¢ gr(hbgyb'hsfy(;]i) ing correlations requires a distinct and angle-dependent value

of y. for the magnetic field close to the edg3,44]. Simi-

whereé~|T—T,| " is the correlation length that diverges at larly, results obtained-recently fo_r corrglations in the vicinity
the critical point. The first term in square brackets corre-Of @ fractal surface with fractal dimensiah [22,23 canﬁndot
sponds to a flat surface, witp,, andy, describing the rel- D€ obtained using the value pf for a flat surfacgwith £~
evance of bulk and surface fields, respectivily?]. The  replacingé™“*'in Eq.(7.1) and omitting the second term in
second term gives the effect of surface roughness, witigquare brackeisThusys can be regarded as inherently re-
£2(79 reflecting the average increase in area. lated to self-affine geometry. Interestingly, howeWgrjtself

By taking derivatives of Eq(7.1), one can derive scaling does not depend on the roughness exporderdt least to
relations between various surface critical exponents, in comerdere.
plete analogy to the case of a flat surfade?]. In the fol- (i) Higher orders of the perturbation thears the pre-
lowing we focus on the contributions generated by the survious remark already indicates, higher order results are
face roughness, which according to E{.1) appearin  necessary in order to check the generality of our results for
additionto the corresponding contributions for a flat surface.the n-vector model. For the contributions up to second order
For example, the singular part of tiserface magnetization in h(x) (as considered hexewe expect a systematic expan-
_af(SSing)/(ghS, can be written asm;+m; so that y;  Sionin powers ok, and one can calculate thid(e2) contri-
= g, /9h,, andy,,= dff, /oh, represent the contributions to Putions of, e.9.f, and 4 in Eq. (5.12. All the information
the local susceptibilityand thelayer susceptibilitygenerated Needed about the self-affinely rough surface is contained in
by the surface roughness, respectively. Similarly, we supposgd- (4-2- However, it is not clear how the perturbative cal-
that the singular part of the two-point correlation function culation inh(x), for a self-affinely rough surface, can be
near the surface can be written &gr:r')+G(r:r’), and generalized to h|gher orderg than the second. Such an at-
- e = h tempt would require, in addition to E.2), the knowledge
G(r;r’) behaves foh,=hs=0 as of stochastic averages of three and more fi¢ltle), which

= (d=2+7) ) B can also introduce new length scales. Regarding these ob-

r=r’| Wry([r=r'[/¢),  9=0, stacles, it would be desirable to complement our results with
[r—r'|~@=2707 ([r—r'|/,9), 9>0, a nonperturbative approach, e.g., for the two-dimensional
- - 7 Ising model bounded by a self-affinely rough boundary.

(iii) Multiscaling For a random fractal boundary, it has
where ¢ is the angler —r’ makes with the surface, add,  been showii23] that correlation functions exhibit multiscal-
vanishes for9— 0. Equationg7.1) and(7.2) then imply the ing, which means that the averagever fractal realizations
scaling relations between various critical exponents relatedf the boundary with given fractal dimensidp) of their nth
to a rough surface shown in Table I. power does not scale in the same way asritte power of

Equations(5.15 and (5.17) for the n-vector model are their average. It would be interesting to see if similar behav-
consistent with the scaling relation f@g and?, shown in ior also applies to self-affine rough boundaries.

G(r;r')~
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APPENDIX A:  PATH INTEGRAL FORMULATION FOR with the bulk two-point correlation functio®,(r,r’) corre-

CORRELATION FUNCTIONS sponding to the actiofA1). The effective actiofS is given

In this appendix we introduce a method to evaluate corby
relation functions of a fluctuating field subject to boundary

conditions at surfaces of arbitrary shape. We consider a sca- & _1 f f
lar field @ described by the Gaussian action Sl ¥ 3} ZQEIB Qadxa QﬁdXBW“(X“)Gb(X“’Xﬁ)

(A1) xqfﬁ(xﬂ)—i; fddrfﬂ dX,J(r)

1
S{cb}:f ddr[—(VCD)2+ 7092,
2 2
corresponding to Eg2.1) with ug=0. In order to study the X Gp(r,Xa) W alX,). (A8)

behavior of correlation functions for cases where more than ) . . .
one boundary surface is present, we consiemanifolds Note that evaluation of EQA6) requires functional integra-

(objects Q,, with a=1,...N. Each point on the manifol® tion over the curved manifold§),. This is facilitated by
is represerﬁted by a vectot, (y) =[X“(y); u=1,...d]. ASDi expressing the functional measuf®Wv ,(X,) in terms of
suming the Dirichlet bound;ry condic'(ciohyzo or’1 the mani-  the local coordinateg, which itself comprise a flat manifold
folds, a general correlation function with respect to the ac—(the local coordinate systemiTo this end we introduce the

tion (A1) can be written as new fields ¢, (y)=W¥ [ X,(y)]. However, this transforma-
tion requires some care regarding the integration measure

1 N fﬂadxa in Eg. (A8) as well as the functional measure
()= Do) [I TI s(@(X,))-- e S, DV (X,) in Eq. (A6). The result if45]
0 T a=1 X

' (A2) ;
f IT D\Ifa(xa)efseff{“}:f I1 Do (y)eSertd

(A9)

where

N
Zozf D(IJ(QH H S(D(X,))e St (A3)  where the fieldg,(y)=[g.(y)1¥*¥.(y) is given for each
a=1 Xq manifold Q, in terms of the determinarg,(y) of its in-

. . duced metric,
Correlation functions of® can then be deduced from the

generating functional d

IXE 9X?
ga,ij(Y)—#zyil ay. ay;

(A10)
Z{J}=<epr der(r)rb(r)D, (A4)

The new effective actios, is given by

which is normalized such th&{0}= 1.
Following Refs.[32,33], we now express for each mani-

fold Q, the boundary condition enforcing functional Seﬁ{‘f"‘l}:%%; deyf d°y" ba(Y)Aup(y.y") dp(Y")
Hxaé((i)(xa)) in terms of an auxiliary fieldV ,(X,) as
i3 [ ot [ dPyano.ry )
[T a@(x.)

(A11)
EJ D\I’a(xa)exr{ij dX W (X )D(X,) |- with the kernels
a,
(A5) Aus(Y,Y") =90 THG(X (), Xy NGy )T,
(Al2a
The Gaussian integration ovédr in Egs.(A2) and (A3) can
be performed, resulting in @o(1,Y)=Gp(r, X (Y[ guly) 1 (A12Db)
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The functional measuréD¢ ,(y) on the right hand side of

d
~ J
Eq. (A9) is the one conventionally used on a flat manifold. H—H= —f ddrE [a—[h(x)@)(z)]
The corresponding Gaussian integrations can thus be per- Hs k=1 [Tk

formed, resulting in

Z{J}sz{J}ex;{—%f ddrf d¥ " I(r)K(r,r")J(r")
(A13)

with the kernel

K([,L’)=a2ﬂ deyf d%y w,(r V)AL (Y. Y )wg(r'y').
(A14)

Using  AL5(Y.y)=[9.N] "M 5(y.y ) gs(y) ]
where M ,q(y,y’) is the functional inverse of
Gp(Xa(¥), Xs(y")) (with respect to botly, y’ and the indices
@, B), one finds that the factors ¢f,(y)]¥* in Eq. (A14)
cancel. From Eqgs(A12)—(Al14) one can thus read off the
final result for the two-point correlation function,

N
6.6t 3 [ a®y [ aPy G x,m)
a,B=1

XM a5(Y,Y" )Go(r ", Xg(y")). (A15)

ChoosingN=1, corresponding to only one manifold, gives

Eqg. (2.3.

APPENDIX B: SHORT DISTANCE EXPANSION OF THE
STRESS TENSOR

In this appendix we consider the expansion of the tWO-yist
point correlation function for a general massless field theor){he

PHYSICAL REVIEW E65 046121

T.r)+0(h?),
(B2)

where HS denotes the half-space (x,z) with z=0. Using

the property>,d,Tix=0 and the divergence theorem, one

obtains
H=H+

Ddeh(x)Tzz(x,z= 0)+0(h?). (B3
R

R

The contribution to first order i is locatedat the (flat)
surface and does not depend on the specific choi¢(aj.
The higher order contributior®(h?) cannot be transformed
in this way, and will not be addressed in the following.
T,Ax,0)=Ilims_,T,AX,6) represents a surface operator,
which does not, however, need to be renormalized at the
surface, so that its scaling dimension equals its canonical
inverse length dimension af [49,50.

In the following we consider the cumula¢® ()P (r’))¢
of the two-point correlation function in the system described
by H{®} above the deformed surfa& Using Eq.(B3) one
finds

(D(D(r))C=(D(Nd(r"))5— f d®xh(x)

X(ToAX0P(r)®(r'))5+0(h?),
(B4)

where ( )§ denotes the cumulant within the half-space HS
bounded by the flat surfac®,. We now consider the limit
p=|r,—r /|—%= (see Fig. 1, so that we can use the short-
ance expansiof6DE) of the order parameteb(r) near
surface. For the first tera® (r)®(r'))§ in Eq. (B4), the

described by a Hamiltoniai{®}, to first order in the defor- : i e -
mations of the height profile of a bounding surface. To thisSDE is well known:(a) for the Dirichlet boundary condition

end, we introduce a new type of short-distance expansion oCP_O' the SDE is given by1,2]
the stress tensor near a surface with the following scale-
invariant boundary conditionsia) the Dirichlet boundary
condition ®=0 corresponding to the ordinary surface uni-

versality class, andb) the boundary conditiob =« de- where 9,d(r,,z=0) is a surface operator, is a surface

scrlblng_ cr|t|ca_l adsorption, corresponding to the extraordl-Critical exponent, and is a nonuniversal amplitudéb) for
nary universality class.

A deformed surfaceS given by the height profild(x) the boundary conditior> =z, the SDE has the for49,50
(see Fig. 1 can be obtained from the flat surfa&g with

CI)(rH,z)=ai”‘\"’>’2&—&z¢>(ru,z)|Z:0+~~, (B53)

d(ry,z
h(x)=0 by means of a coordinate transformation, which q)(#zlerTszzz(rH,z:O)Jr---, (B5b)
maps the spacex(z) on the spaceX z). We define this (®(ry,2))o

transformation by where(®(r;,z)), is taken at the critical point of the field

theory, andl is the identity operator. The amplitudsg; is
universal. EquatioriB5) in conjunction with the scaling be-
havior (®(r)®(r'))§~p @27 Df(z/p,z'Ip) [1,2] gives
the result for a flat surface

X=X, z=z+h(x)0(2), (B1)
where ©(z) is an arbitrary differentiable function with
0(2)=1 for z=z, with somez,>0, and which vanishes for
z—o, We denote the Hamiltonian with the flat surfeggby
H and the Hamiltonian with a deformed surfaBeby .
According to the definition of the stress tendog [46—48
the change of{ generated by the coordinate transformationFor boundary conditiortb), one hasp,=d+2 [49,50, and
(B1) can be written as the propertyT,, =0 has been used.

(O()D(r))§~(zZ) M M2p= @25 m) oo,
(B6)
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For the second termfid°xh(x)(T,£x,0)® (r)®(r"))§ on
the right hand sidd€rhs) of Eq. (B4), the above procedure
cannot be applied directly because the integration,gfx,0)
separates the pointsandr’ from the surface. To proceed, it
is illustrative to consider first the case ofcanstantheight
field h(x)=hg. In this case, the integration af,,(x,0) sim-
ply amounts to a surface shift in the forffl]

he j dOX(T, (X0 (1) ("))

é’) (I) (I) \\C
o (PMP(r))g - (B7)

O oz
Consider for illustration the case for which oy (r,z) is
close to the surface, i.ez<z'. Since(®(r)®(r’))§ for
small z behaves like a power in thez derivative on the rhs
of Eq. (B7) is larger than the’ derivative by an amount of
orderz’'/z. Now we recall that for the boundary conditions
(@ and (b), correlations near the surface aeppressedso
that one can expect that on the left hand side of @BY)
actually only a small integration region aroundcontributes

PHYSICAL REVIEW E 65 046121

we conclude that the leading contribution fer- of the
second term on the rhs of EqB4) is given by [A(r)
+A(£’)]<<I)(£)<I>([’))g with the amplitudeA(r) in Eq.
(2.12. Thus we obtain the leading scaling behavior of
(D(r)d(r’))€ for p—o quoted in Eq(2.11).

APPENDIX C: STRUCTURE OF THE LOOP EXPANSION

We consider the diagrams on the right hand side of Fig.
2(b). According to Eq(5.2), in the (p, ) representation, the
distancess, of the ®* vertices[dots in Fig. Zb)] from the
surface have to be integrated usifigdd,. To one loop or-
der, only the three diagrams in the first line of Figh)2
exhibit short-distance singularities 8= 0. These diagrams
consist of the following components:

~——e = go(p;6,60) [see Eq. (2.8)] ; (Cy
—x = e Pl . (C2
— e = ga(p;6,60) [see Eq.(4.4)] ; (C3)

to the z derivative on the rhs. This suggests the operator

product expansion

T AX0D(r,2)=A(X—r1y, Z) <I>(r“ z)+--- (B8)
for (x, 0) close tor=(r,,z), whereA(x,z) is a representa-

tion of the delta functions®(x) in D dimensions, i.e.,

limA(x,z)=6°(x).

z—0

f dPxA(x,z)=1, (B9)

Note thatd,®(r,,z) on the rhs of Eq(B8) is not a surface
operator, since the derivative is taken at a distan@>0
from the surface. The validity of E¢B8) can be verified for

various cases. For two-dimensional systems at criticality

bounded by a line with the boundary conditi@ or (b), it
follows from the local form of the conformal Ward Identity

[42]. For the Gaussian model with the boundary condition

(a), it can easily be verified for any dimensioh For a®*
model at criticality with boundary conditiotb), Eq. (B8) is
consistent with the form ofT,(x,0)®(r,z) )¢ known from
conformal invariance arguments for amywith 2<d<4
[49,50. For this system we have checked EBB8) also for
the correlation function{e(r)¢e(r’))e with ¢(r)=®(r)
—(®(r)) [50] to first (one loop order in thed®* interaction.
Let us go back tof dPxh(x)(T,(x,0)®(r)®(r"))§ on
the rhs of Eq(B4) with zandz’ fixed. In order to obtain its
leading behavior fop— e, thex integration can be divided
in two regions. Within one regiorx is far away from botir,
andr| . Hence Eq(B5) can be applied to both points and
r, . Within the complement regiorx is either close ta or
tor; so that Eq(B8) can be used. Due to thederivative in
Eqg. (B8) in conjunction with the scaling behavior quoted
below Eq.(B5), the contribution arising from the second
integration region is by a factqgs/z or p/z’ larger than the
contribution from the first integration region. Using EB6),

i

~pK(p,0)e™™ + pK(p.bo) — ey

with the constanf)=9dK(p, 8)/d8| s—¢.

O = A§-P (CH
with the constant
B J d°« 1 o
A=— er ’ (Co)
(C7)

= QB6&~P + Fi(é) ,

where the functiorir(8,) is regular for§,— 0. The constant
B is given by

. dPa 5 ~ _
B=D JW[UO(Q)G “—2U(a)e”*], (C8

where Uy(pd)=U(p,0)/s and U(ps)=U(p,s)/s, with
U(p,d) from Eg. (4.6). Note that in Eq.(C7) the terms in
square brackets in Ed4.4), which correspond to the first
line in Eq.(2.23, do not contribute.

Writing A= Ay+eA;+0(e?) and B=By+eB;+0(e?)
with e=4—d, one finds thatdy= By. This nontrivial fact is
the reason why the 4/poles due to the short-distance singu-
larities of the first and the third diagram in the first line of
Fig. 2(b) cancel each other. The second diagram can be writ-
ten asA[1/e — Cc—In(p)] +F,(p,d), with Euler’s
constantCg and a pole-free functiof,(p, ). The 1£ pole
in this expression is then removed by the facgr'?, with
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Zl from Eq. (5.8), that multiplies the zero-loop contribution tiation is not entirely based on an RG argument, but relies on
e - Of the correlation function. The remaining, regular the plausible assumption that the self-affine structure of the
contributions, including those from the diagrams in the secsurface should result in pure power lawsithout logarith-

ond line of Fig. 2b), contain additional logarithmic terms in mic corrections for the decay of correlation functions.

S which are not present if the surface was flat. One can then An analogous calculation leads to the quoted results for
identify these logarithmic contributions, and show that theylateral correlations. Since in this case both points are located
can be recast in the power law according to E@s1)—  near the surface, only four of the six diagrams in Fif)2
(5.13. It should be noted, however, that here this exponenare different from each other.
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