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Correlation functions near modulated and rough surfaces
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In a system with long-ranged correlations, the behavior of correlation functions is sensitive to the presence
of a boundary. We show that surface deformations strongly modify this behavior as compared to a flat surface.
The modified near surface correlations can be measured by scattering probes. To determine these correlations,
we develop a perturbative calculation in the deformations in height from a flat surface. Detailed results are
given for a regularly patterned surface, as well as for a self-affinely rough surface with roughness exponentz.
By combining this perturbative calculation in height deformations with the field-theoretic renormalization-
group approach, we also estimate the values of critical exponents governing the behavior of the decay of
correlation functions near a self-affinely rough surface. We find that for the interacting theory, a large enough
z can lead to a different surface critical behavior. We also provide scaling relations between roughness induced
critical exponents for thermodynamic surface quantities.
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I. INTRODUCTION

In a material with long-ranged correlations, such as a
uid crystal or a superfluid, any local perturbation has infl
ence over large distances. As a result, local properties, s
as magnetization density, as well as correlation functions
modified on approaching a surface.Critical behavior near
surfaces or defects, which is quite different from the bu
has been extensively studied by means of the field-theo
renormalization-group approach@1–4#. In this case, the loca
order parameterF is perturbed near the surface up to a d
tance set by the diverging bulk correlation lengthj;uT
2Tcu2n, whereTc is the bulk critical temperature. Theore
ical predictions for surface criticality have been tested
perimentally@5–9# and in simulations@10,11#. In particular,
the grazing incidence of x rays and neutrons@3# has become
a standard tool for probing critical behavior near surfa
and interfaces@5–8#. For instance, the decay of the two-poi
correlation function has been measured close to the sur
of a Fe3Al crystal near its continuous order-disorder tran
tion by the method of grazing incidence of x rays@5#. The
phenomenon of critical adsorption near columnar defects@4#
has apparently been observed by small angle scatterin
light in a NH4Br crystal near a continuous structural pha
transition@12#.

Most theoretical investigations so far have been restric
to flat surfaces. This is justified to a certain degree, sin
microscopic deviations from this idealized picture such
terraces of monoatomic height do not change the unive
surface critical behavior@13,14#. However, for deviations on
mesoscopic length scales, new phenomena are expe
Such deviations can be divided into two classes.

~i! Advanced experimental methods of nanoscience s
as x ray@15#, guided growth@16#, and nanosphere lithogra
phy @17#, allow one to endow surfaces with specific, regu
geometrical patterns down to the nanometer scale. Th
structures hold much promise for applications towards na
chips@18# or optoelectronic devices@19#. The surface modu-
lations also offer a wide range of possible applications
1063-651X/2002/65~4!/046121~14!/$20.00 65 0461
-
-
ch
re

,
tic

-

-

s

ce
-

of

d
e
s
al

ed.

h

r
se
o-

n

fluid environments. For instance, at temperatures betw
the wetting temperatureTw of the corresponding planar sub
strate and the critical temperatureTc of the bulk fluid, one
can manipulate the adsorption properties of the fluid on
substrate by endowing the surface with periodic patterns
various shapes@20,21#.

~ii ! Surfaces or interfaces can be naturally rough, e.g.,
to growth, fracture, or erosion. One possibility is that t
substrate has afractal surface, so that the surface areaS
grows as a power of the projected area, i.e.,S;Ldf whereL
is a characteristic length anddf is the fractal dimension of
the surface. Recently, the scaling behavior of correlat
functions in a critical system in two dimensions near t
fractal boundary of a random walk, for whichdf54/3, has
been studied by methods of quantum gravity@22# and con-
formal invariance@23#. Another possibility is that the sub
strate has aself-affinesurface, for which the surface area
proportional to the projected area. In this case the he
fluctuations are characterized by a roughness exponez
with 0,z,1, so that (dh)2;L2z, where dh is a typical
height fluctuation over a distanceL. Self-affine scaling is
predicted by many numerical and analytical models of s
face growth@24,25#, and is also observed in a number
experiments@26#. A liquid-vapor interface, which exhibits
rippled configurations due to the occurrence of capilla
waves, is another realization of a self-affine rough surfa
@27#. An example where such an interface confines a criti
system is given by the interface between liquid4He near the
normalfluid-superfluid transition and its noncritical vapo
which occurs in a recently used experimental setup in wh
the Casimir force in a critical system is measured@28# ~see
also Ref.@29#!.

In a previous paper@30#, we showed that the shape of th
surface has a distinct influence on the properties of an a
cent medium with long-range correlations. Here we dem
strate this in more detail for two-point correlation functio
near a critical point of the medium, for both cases~i! and~ii !
outlined above. Apart from Appendix B, we choose the D
richlet boundary conditionF50 at the surface, which rep
©2002 The American Physical Society21-1
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ANDREAS HANKE AND MEHRAN KARDAR PHYSICAL REVIEW E 65 046121
resents the so-calledordinary surface universality class in
case of a flat surface, and is usually appropriate for magn
binary alloys near a continuous order-disorder transition,
4He near the normalfluid-superfluid transition@1,2#. In Ref.
@31#, the influence of surface roughness on the fluctuat
properties of wetting films, and on the demagnetizing fac
of a thin magnetic film, have been studied.

In order to study the effects of the surface shape, we
velop a perturbative expansion of two-point correlation fun
tions in the deformations of the height profile. The method
the path integral approach used previously to calculate
energies@32#, and in the context of the dynamic@33# and
static @34# Casimir effect. Initially for a Gaussian field, th
calculations are carried out to second order in the defor
tions. The first order results can also be derived by mean
the stress tensor in conjunction with a different type of sh
distance expansion~see Appendix B!, and hold quite gener
ally for any critical system bounded by a surface with eith
~a! Dirichlet boundary conditionsF50, or ~b! boundary
conditions that break the symmetry of the order param
near the surface. In the latter case, the leading singular
havior can be obtained by settingF5` at the surface, cor-
responding to theextraordinaryor normalsurface universal-
ity class, describingcritical adsorption of a binary liquid
mixture on the surface of a substrate or the interface betw
the critical liquid and its noncritical vapor@1,2,9#. The sec-
ond order results are particularly useful for cases in wh
the first order contributions vanish~see below!.

The diffuse scattering of x rays and neutrons at graz
incidence due to the modified correlations appears in a
tion to what would be observed if the surface was separa
two homogeneous media@35#. The modified correlations
may thus provide an additional and indirect means of ch
acterizing the surface profile. This may be of value wh
other techniques are not possible, as in the case of the
rior surface of a glass, or an internal crack, whereas sca
ing from a critical fluid or binary alloy coating the surfac
may be feasible. Already at the first order, the two-po
correlation functions track the profile from the substra
with a modulation that decreases with the distance of the
points from the surface. This leads to explicit predictions
the structure factor, as a function of the lateral wave vec
transfer, for a modulated surface.

For self-affinely rough surfaces, second order calculati
are necessary, as the first order results vanish on averag
this context, the surface roughness is an example
quenched randomness. For a massless Gaussian field
find the expected result that self-affine roughness lead
subleading corrections to the decay of two-point correlat
functions, which at a scaler are smaller by a factor o
r 22(12z) than the leading contribution coming from a fl
surface. Typical critical systems, however, are described
non-Gaussian~interacting! field theory. In this case, the cor
relations are calculated perturbatively in a double expans
in the deformations and in the strength of the interaction,
the results interpreted with the aid of the renormalizat
group~RG! in 42« dimensions. We find that the subleadin
corrections now fall off with a slower power as compared
the Gaussian case and, surprisingly, for a sufficiently largz
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evendominate, giving rise to a different surface critical be
havior. However, for theXYmodel in two dimensions, below
the Kosterlitz-Thouless temperature, we again find that
surface correlations fall off with the simple relative factor
r 22(12z) as compared to a flat surface~line!.

The results for correlation functions can also be related
thermodynamic quantities. To this end, we introduce disti
fields hb andhs in the bulk and close to the surface, respe
tively, and propose a scaling ansatz for the leading sing
part of the surface free energy per projected areaf s

(sing) . By
taking suitable derivatives off s

(sing) with respect tohb and
hs , we then obtain scaling relations for a variety of critic
exponents related to thermodynamic surface quantities.

The rest of the paper is organized as follows. In Sec. II
introduce the geometry, and develop the formalism for
perturbative calculation of correlation functions for a fr
~Gaussian! field theory. In Secs. III and IV we then conside
a regularly patterned surface and a self-affinely rough surf
in more detail. In Sec. V we combine the previous resu
with the RG, and obtain results for surface critical exponen
In Sec. VI we consider theXYmodel. Finally, in Sec. VII, we
draw our conclusions and outline some possible extens
of our paper; in particular, we relate our previous results
correlation functions to thermodynamic surface quantit
via scaling relations. Some technical details are left for A
pendices A–C. In Appendix B, for instance, we introduce
different type of short-distance expansion for the stress
sor.

II. GEOMETRY AND FREE FIELD THEORY

We consider a manifoldV with the shape of a deforme
surface. Each point on the manifold is represented by a v
tor X(y)5@Xm(y);m51,...,d#; a D-dimensional manifoldV
embedded ind-dimensional space is parametrized byy
5(y1 ,...,yD). In the absence of overhangs and inlets,
surface profile can be described by a single-valued he
functionh(y), wherey spans a (D5d21)-dimensional base
plane~see Fig. 1!. The parametrization of the surface is th
X(y)5„y,h(y)…. Position vectorsr are decomposed accord
ing to r 5(r i ,z), wherer i comprises theD5d21 compo-
nents parallel to the surface, andz is the distance from the
base plane. The vertical distance ofr from the surface is

FIG. 1. Position vectorsr 5(r i ,z) and r 85(r i8 ,z8) of the two-
point correlation function in the critical system located above a
bounded by a deformed surface. The surface profile is describe
the height functionh(x), and the vertical distances ofr andr 8 from
the surface are given byd5z2h(r i) and d85z82h(r i8), respec-
tively.
1-2
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CORRELATION FUNCTIONS NEAR MODULATED AND . . . PHYSICAL REVIEW E65 046121
given byd5z2h(r i) ~see Fig. 1!. We denoted-dimensional
vectors with underlined letters, andD-dimensional vectors
with boldface letters.

Fluctuations in the critical system located above the s
face will be described by ann-component order paramete
field F(r )5„F1(r ),...,Fn(r )…. We consider the statistica
Boltzmann weighte2bH with standard Hamiltonian@1,2#,

bH$F%5E
V
ddr H 1

2
~“F!21

t0

2
F21

u0

4!
~F2!2J ,

~2.1!

wheret0;T2Tc and u0 is the strength of theF4 interac-
tion. In this section, we study the Gaussian theory, for wh
u050. The volumeV consists of the space available to t
critical system. The above expression must be suppleme
by a boundary condition on the surface. We choose the
richlet boundary conditionF50, representing the ordinar
surface universality class. In this case, forn51 the order
parameterF can represent the magnetization in a uniax
ferromagnet or the deviation of the composition in a bina
alloy from the critical composition, forn52 the magnetiza-
tion in aXYmagnet or the superfluid order parameter of4He
near the normalfluid-superfluid transition, and forn53 the
magnetization in a Heisenberg ferromagnet@1,2#.

The Gaussian two-point correlation function~or propaga-
tor!

^F i~r !F j~r 8!&5d i j G~r :r 8!, u050, ~2.2!

where the bracketŝ& denote the thermal average accordi
to Eq. ~2.1! with u050, can be calculated using function
integral methods@32,33#. The details of this calculation ar
left to Appendix A. The result is

G~r ;r 8!5Gb~r ;r 8!2E dDxE dDy

3Gb„r ;x,h~x!…M ~x,y!Gb„r 8;y,h~y!…,

~2.3!

where

Gb~r ;r 8!5E dDp

~2p!D exp@ ip•~r i2r i8!#
1

2p
e2puz2z8u,

~2.4!

with p5upu, is the Gaussian propagator in unbounded bu
and the kernel M (x,y) is the inverse of the kerne
Gb(x,h(x);y,h(y)), i.e.,

E dDyM~x,y!Gb„y,h~y!;y8,h~y8!…5dD~x2y8!.

~2.5!

While the above results@with an appropriately modified bulk
propagator in Eq.~2.4!# are generally valid, we focus on th
behavior of the correlation functions at the bulk critic
point, i.e., forT5Tc , where correlations are strongest@36#.
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Equation~2.3! is difficult to evaluate in general. To pro
ceed, we now consider the height profileh(x) as a small
perturbation, and expandG(r ;r 8) in a seriesG01G11G2
1¯ in powers ofh up to second order, under the constra
that z andz8 are kept fixed. The lowest order result,

G0~r ;r 8!5Gb~r i ,z;r i8 ,z8!2Gb~r i ,z;r i8 ,2z8! ~2.6!

5E dDp

~2p!D exp@ ip•~r i2r i8!#g0~p;z,z8!

~2.7!

with @see Eq.~2.4!#

g0~p;z,z8!5
1

2p
@e2puz2z8u2e2p~z1z8!# ~2.8!

corresponds to a flat surface, and can be obtained by
method of images@1,2#. The bulk correlation function
Gb(r ;r 8) decays asr 2(d221h) for large separationsr 5ur
2r 8u, where the bulk critical exponenth is given byh50 in
the Gaussian theory. In contrast, if both points remain cl
to the surface,G0(r ;r 8) decays asr 2(d221h i), whereh i is a
surface critical exponent given byh i52 in the Gaussian
theory @1,2#.

The first order result is given by@37#

G1~r ;r 8!524E dDxJ~r i ,x;z!h~x!J~r i8 ,x;z8!, ~2.9!

with

J~x,y;z!5
1

2 E dDp

~2p!D eip•~x2y!e2pz. ~2.10!

Note thatJ(x,y;z→01)5 1
2 dD(x2y), where dD(x) is the

delta function inD dimensions. Already the result at th
order tracks the profileh(x) of the surface. For example, fo
r5ur i2r i8u→` with z andz8 fixed, the above results forG0

andG1 imply the behavior~see Appendix B!

G~r ;r 8!;@12A~r !2A~r 8!#r2~d221h i !, ~2.11!

up to terms of order (h/z)2 and (h/z8)2. Thus, the leading
power law is the same as for a flat surface, but the amplit
is modulated by the surface deformations in the vicinity ofr i

and r i8 by the dimensionless and universal amplitude,

A~r !5
h i2h

2 E dDx
h~x!

z
D~x2r i ,z!, ~2.12!

where for the present Gaussian case,h i2h52 and D(x
2r i ,z)52J(x,r i ;z). Equations~2.11! and ~2.12! are valid
quite generally, and, in particular, also for the boundary c
dition representing critical adsorption of a binary liquid mi
ture ~see Appendix B!. The explicit form ofD(x,z), how-
ever, depends on the surface universality class consider

The second order result reads
1-3
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ANDREAS HANKE AND MEHRAN KARDAR PHYSICAL REVIEW E 65 046121
G2~r ;r 8!5E dDxE dDyh~x!h~y!C~r ,r 8;x,y!

~2.13!

with

C~r ,r 8;x,y!528J~r i ,x;z!J~r i8 ,y;z8!K~x,y;z→01!
~2.14!

and

K~x,y;z!5
1

2E dDp

~2p!D eip•~x2y!pe2pz. ~2.15!

In a scattering experiment with grazing incidence, o
probes the lateral structure factorS(p,z;p8,z8) @3,6,35#,
which is defined by the Fourier transform

G~r ;r 8!5E dDp

~2p!D eip•r i E dDp8

~2p!D eip8•r i8S~p,z;p8,z8!.

~2.16!

Using the Fourier transform of the height profile

h~y!5E dDk

~2p!D eik•yĥ~k!, ~2.17!

with ĥ(2k)5ĥ(k)* , we obtain an equivalent expansionS
5S01S11S21..., with

S05
1

2p
@e2puz2z8u2e2p~z1z8!#~2p!Dd~p1p8!,

~2.18!

S152e2pze2p8z8ĥ~p1p8!, ~2.19!

S252e2pze2p8z8E dDk

~2p!D up2kuĥ~k!ĥ~p1p82k!.

~2.20!

For a rough surface, the deviations in height from a pla
surface have no upper bound. In this case, it is convenien
carry out the expansion inh(x) for fixed vertical distances
d5z2h(r i) andd85z2h(r i8), instead of for fixedz andz8
~see Fig. 1!. This representation facilitates the perturbati
analysis of the field theory described by Eq.~2.1! ~see Sec.
V!. Moreover, in view of probing correlation functions la
eral to the substrate surface by grazing incidence scatte
of x rays and neutrons@3,6,35#, this representation is natura
since in these experimentsd andd8 show up as length scale
which are set by the finite penetration depth of the x ray

Writing G5G01GI1GII1... where the subscripts 0,
II, indicate the corresponding order inh(x) under the con-
straint thatd andd8 are kept fixed, we find

G0~r ;r 8!5Gb~r i ,d;r i8 ,d8!2Gb~r i ,d;r i8 ,2d8!,
~2.21!
04612
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GI~r ;r 8!52@h~r i!2h~r i8!#
]

]d8
Gb~r i ,d;r i8 ,d8!

12E dDxJ~r i ,x;d!@h~r i!1h~r i8!

22h~x!#J~r i8 ,x;d8!, ~2.22!

GII~r ;r 8!5 1
2 @K~r i ,r i8 ;ud2d8u!1K~r i ,r i8 ;d1d8!#@h~r i!

2h~r i8!#21E dDxE dDyJ~r i ,x;d!M0~x,y!

3@h~x!2h~y!#2J~r i8 ,y;d8!

22F E dDxK~r i ,x;d!@h~r i!2h~x!#2J~r i8 ,x;d8!

1~r↔r 8!G . ~2.23!

The first line in Eq.~2.22! is valid for d8,d, andM0(x,y) in
Eq. ~2.23! is defined as in Eq.~2.5! but with h(y)50. The
kernelsJ andK are given by Eqs.~2.10! and~2.15!, respec-
tively. The contributionG0 in Eq. ~2.21! corresponds to the
Gaussian propagator for a half-space bounded by a flat s
face with Dirichlet boundary conditions, i.e.,

G0~r ;r 8!5E dDp

~2p!D exp@ ip•~r i2r i8!#g0~p;d,d8!

~2.24!

with g0 from Eq. ~2.8!.

III. MODULATED SURFACES

We now apply the results of the preceding section to pa
terned surfaces. The simplest example is provided by
uniaxial sinusoidal modulation with wavelengthl along, say,
the x direction, i.e.,

h~x,Y!5a cos~2px/l!. ~3.1!

The other (D21) directions along the surface, denoted b
Y, remain translationally invariant. The Fourier transform o
this height profile is

ĥ~k!5
a

2
~2p!DdD21~K !FdS kx2

2p

l D1dS kx1
2p

l D G ,
~3.2!

wherek is decomposed according tok5(kx ,K ).
The nontrivial orders of the expansion ofG(r ;r 8) in h for

fixed z andz8 are given by

G1~r i ,z;r i8 ,z8!

52
a

2
e2p i /l•x8 E dDp

~2p!D exp@ ip•~r i2r i8!#e2pz

3expF2Up2S 2p

l
,0D Uz8G1~r i↔r i8!, ~3.3!
1-4
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G2~r i ,z;r i8 ,z8!

52
a2

4 E dDp

~2p!D exp@ ip•~r i2r i8!#Up2S 2p

l
,0D U

3e2pze2pz82
a2

4
e4p i /l•x8E dDp

~2p!D

3exp@ ip•~r i2r i8!#Up2S 2p

l
,0D Ue2pz

3expF2Up2S 4p

l
,0D Uz8G1~r i↔r i8!. ~3.4!

For r5ur i2r i8u→`, the leading power law inr is the same
as for a flat surface, but the amplitude is modulated by
shape of the surface in the vicinity ofr i andr i8 . In particular,
the first order result in Eq.~3.3! is consistent with Eqs.~2.11!
and ~2.12!. For z, z8!a, l the correlations follow more o
less the surface modulation. Interestingly, forz, z8@l, the
correlations that are sensitive to the modulation, i.e., dep
on l, decayexponentiallyin z/l. For instance, forz5z8 and
z/l→`, one hasG1;e2(2p/l)z andG2;e2(4p/l)z. This ex-
ponential decay is due to the fact that the surface profile~3.1!
has a perfect periodic shape. In contrast, alocal perturbation
on the surface would result in a perturbation of the corre
tions that decays only as a power law with the distance fr
the surface.

The corresponding orders of the lateral structure factor
given by

S1~p,z;p8,z8!

52
a

2
e2pze2p8z8~2p!DdD21~P1P8!

3FdS px1px82
2p

l D1dS px1px81
2p

l D G ,
~3.5!

S2~p,z;p8,z8!

52
a2

4
e2pze2p8z8~2p!DdD21~P1P8!H Up2S 2p

l
,0D U

3FdS px1px82
4p

l D1d~px1px8!G1Up1S 2p

l
,0D U

3FdS px1px81
4p

l D1d~px1px8!G J . ~3.6!

These results indirectly characterize the surface in scatte
experiments. For instance, the form ofS1 implies that the
incident wave vector componentpx is scattered topx85px

62p/l while the other components ofp remain unchanged
The form of S2 implies that px is scattered by 4p/l, 0,
24p/l. In a scattering experiment with grazing incidenc
the length scale perpendicular to the surface is set by
depthb that the evanescent wave penetrates the sample,
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ing rise to diffuse scattering and thereby probing the criti
correlations close to the surface@3#. Since this diffuse scat-
tering appears in addition to the contribution already pres
away from criticality@35#, it can, in principle, be separate
out by tuning the temperature deviationT2Tc . We assume
that b is much larger than the height of the deformations.
this case, the above expansion in the deformations resul
an expansion in powers ofh/b!1 for the elastic scattering
cross section, which allows one to distinguish the cor
sponding contributions via their intensities.

IV. ROUGH SURFACES

The second order results are particularly useful wh
dealing with rough surfaces, where the quench averaged
order corrections vanish. Within the description using
height functionh(x), self-affine roughness is characterize
by the behavior

@h~x!2h~y!#2;ux2yu2z, ux2yu→`, ~4.1!

where the overbar denotes averaging over self-affine rea
tions of the surface profile, andz with 0,z,1 is the rough-
ness exponent. Without restriction of the generality
choose the coordinate system so thath(x)50. In the limit of
short distancesux2yu it is reasonable to assume that th
surface is smooth. This can be modeled by the Fourier tra
form,

@h~x!2h~y!#25v222zux2yu2

3E dDp

~2p!D eip•~x2y!p2D1222ze2pl.

~4.2!

While at large separations the above correlations grow
ux2yu2z, we have also introduced a cutoff lengthl to regu-
late the behavior of the surface at short distances, and
overall amplitude lengthv. The lengthl characterizes the
crossover from the analytic behavior forux2yu!l to the
behavior in Eq.~4.1! for ux2yu@l. Apart from its physical
significance, the appearance of the finite crossover lengl
in Eq. ~4.2! is also essential within the present theoretic
approach~see Sec. V!.

A characteristic feature of self-affine roughness is stati
cal translational invariance, since the right-hand side of
~4.2! depends on the distanceux2yu only. This implies that
the averaged lateral structure factorS̄ is proportional to
dD(p1p8), and depends onz, z8, andp5upu only. In order
to maintain translational invariance, it is convenient to e
press the results for the correlation functions in terms of
local distanced5z2h(r i) from the surface rather thanz ~see
Fig. 1!. The two-point correlation function must now vanis
asd or d8 go to zero. On averagingG(r ;r 8) over different
surface profiles, the contributionGI in Eq. ~2.22! vanishes
due toh(x)50, and the contributionGII in Eq. ~2.23! be-
comes translationally invariant with respect to the late
componentsr i andr i8 . We thus introduce the lateral Fourie
transform,
1-5
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GII~r ;r 8!5E dDp

~2p!D exp@ ip•~r i2r i8!#g2~p;d,d8!,

~4.3!

whereg2(p;d,d8) can be read off from the right-hand side
Eq. ~2.23!, i.e.,

g2~p;d,d8!5 1
2 @K~p,ud2d8u!1K~p,d1d8!#

1K~p,0!e2p~d1d8!2K~p,d!e2pd8

2K~p,d8!e2pd. ~4.4!

K(p,d) is the lateral Fourier transform o
K(x,y;d)uh(x)2h(y)u2 and we have used the fact that th
lateral Fourier transform ofM0(x,y)@h(x)2h(y)#2 appear-
ing in the second line of Eq.~2.23! after averaging is given
by 4K(p,d50). Using Eq.~4.2!, K(p,d) can be expresse
in terms of the convolution integral

K~p,d!5v222zE dDk

~2p!D U~ up2ku,d!k2D1222ze2kl,

~4.5!

where U(p,d) is the lateral Fourier transform o
K(x,y;d)ux2yu2 given by

U~p,d!5Fd2
1

2
pd22

D21

2 S 1

p
2d D Ge2pd. ~4.6!

In terms of the coordinatesr 5(r i ,d), the above results im
ply that the leading power law behavior ofG(r ;r 8) for r
5ur i2r i8u→` is the same as for a flat surface. The cor
sponding amplitude depends on the roughness, and is m
fied by a factor of@12k(v/l)2(12z)# as compared to a fla
surface, wherek.0 is a number of order unity. The sublea
ing correction of orderh2 decays with the separationr with
an additional factor ofr22(12z) compared to the leading
term @see Eqs.~5.16! and ~5.17! in Sec. V for«50#.

Note thatg2(p;d,d8) vanishes ford50 or d850 as it
should, according to the Dirichlet boundary condition at t
surface. This wouldnot be the case forz50 or z850 if we
carried out the expansion inh(x) with fixed z andz8. How-
ever, the realization of the Dirichlet boundary condition f
the Gaussian propagator is essential for the perturba
theory of the field theory described by Eq.~2.1!. Moreover,
g2(p;d,d8) is an analytic function for smalld or d8 due to
the finite crossover lengthl in Eq. ~4.5!, which would oth-
erwise be ill defined forl50 if d50 andz,1/2.

V. INTERACTING THEORY

In this section we consider the asymptotic scaling beh
ior of the two-point correlation function near a self-affin
rough surface for then-vector model at the bulk critica
point. By combining our previous results with the fiel
theoretic RG, we estimate the values of the correspond
critical exponents, using a double expansion in the surf
deformations and in the deviation«542d of the space di-
mensiond from the upper critical dimension.
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For the interacting field theory, governed by Eq.~2.1!
with u0Þ0, standard perturbation theory can be applied
get the correlation function near a surface of arbitrary
fixed shape,

^F i~r !F j~r 8!&5d i j G~r ,r 8;u0!, ~5.1!

with

G~r ,r 8;u0!5G~r ,r 8!2
n12

3

u0

2

3E
V
ddRG~r ;R!G~R;R!G~R;r 8!1O~u0

2!,

~5.2!

where the Gaussian propagatorG(r ;r 8) is given by Eq.
~2.3!. We are interested in the behavior of^F i(r )F j (r 8)& in
the limit for which the distance betweenr and r 8 is much
larger than one or both of the vertical distancesd andd8 ~see
Fig. 1!. If d8 is small, say, it is helpful to consider the so
calledsurface operator@1,2#

F'~r i8![]nF~r 8!, ~5.3!

where]n5@g(r i8)#21/2@]d82“h(r i8)•“# denotes the norma
derivative atr i8 on the surface, with the determinantg(y)
511@“h(y)#2 of its induced metric@see Eq.~A10!#. In this
way one avoids to deal with the irrelevant lengthd8 from the
outset. For correlations vertically away from the surface, i
r i5r i8 , we are thus led to consider

^F i~r !F j
'~r i!&5d i j G'~r i ,d;u0!. ~5.4!

The loop expansion ofG'(r i ,d;u0) is obtained by taking the
normal derivative atr i of the right-hand side of Eq.~5.2!.

Up to now in this section we have considered a surfa
with arbitrary but fixed shape. In particular, for aflat surface,
the one-loop addition inu0 can be regularized and renorma
ized by minimal substraction of poles in«542d, leading to
logarithmic contributions in the separationr 5ur 2r 8u. This
perturbative result can then be improved by RG, resulting
power laws inr with corresponding surface critical expo
nents@1,2#. For a self-affinely rough surface, the functionG'

depends, of course, on the shape of this surface, i.e., on
height functionh(x). However, by averaging over differen
surface profiles, we expect that the averageG' depends only
on gross features characterizing the surface configurati
and, in particular, becomes independent ofr i due to transla-
tional invariance. In the following we restrict ourselves
surfaces that are rough on large distances, and to contr
tions to G' up to second order inh(x). According to Eq.
~4.2! we conclude that in this case the amplitudev and the
crossover lengthl are the only remaining relevant lengt
scales characterizing the different surface configurations

In the next step, the resulting averageG'(d;v,l;u0) has
to be renormalized. For our perturbative calculations we
dimensional regularization and renormalization by minim
subtraction of poles in«542d @38#. The reparametrizations
1-6
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u0516p2m«Zuu ~5.5!

and

F5ZF
1/2F ren ~5.6!

of the bulk parameteru0 and the bulk fieldF in terms of
their renormalized counterpartsu and F ren are not affected
by the presence of the surface. HereZu511O(u) and ZF

511O(u2) are the corresponding renormalization facto
and m is the inverse length scale which determines
renormalization-group flow. Since all surfaces we avera
over are smooth on short distances, i.e., distances m
smaller than the crossover lengthl, we expect that the sur
face operatorF' is renormalized by the same renormaliz
tion factorZ1 that would occur for aflat surface with Dirich-
let boundary conditions. Thus,

F'5~ZFZ1!1/2F ren
' , ~5.7!

with @2#

Z1511
n12

3

u

«
1O~u2!. ~5.8!

Using the above reparametrizations the renormalized,
pole-free, counterpart ofG' is given by

G',ren~d;v,l;u,m!5ZF
21Z1

21/2G'~d;v,l;u0!. ~5.9!

This perturbative result can be improved using stand
renormalization-group methods, by noting thatG' does not
depend onm. The asymptotic scaling behavior is govern
by the infrared~long-distance! stable fixed point for which

u5u* 5
3«

n18
1O~«2!, ~5.10!

andG',ren assumes the scaling form

G',ren~d;v,l;u,m!;d2~d221h'! f'~d/l;v/l!
~5.11!

with the critical exponenth' for a flat surface. The scaling
function f' is universal, but depends on the particular w
we have introduced the crossover lengthl in Eq. ~4.2!. Since
all surfaces we average over are smooth on short distan
f'(0;v/l) should be a finite number~in the following we
suppress the dependence off' on v/l for brevity!. In the
other limit d/l→`, the scaling functionf'(d/l) is ex-
pected to exhibit a power law that reflects the self-affi
structure of the surface.

We have confirmed Eq.~5.11! explicitly to one-loop order
according to Eq.~5.2!, using the expansion ofG(r ,r 8) up to
second order inh(x) in Eqs. ~2.21!–~2.23!, and averaging
using Eq.~4.2!. Figure 2 illustrates this double expansion
graphical form@39#.

We indeed find that the 1/« poles generated by the surfac
operatorF' in Eq. ~5.4! are removed by the renormalizatio
factor Z1 in Eq. ~5.8!, which provides a test of our calcula
04612
,
e
e
ch

.,

d

es,

e

tion, and for the reasoning leading to Eq.~5.11!. This calcu-
lation gives also the explicit form of the scaling functionf'

to first order in«. We confirm, in particular, thatf'(0) is a
finite number, and that the logarithmic contributions
f'(d/l) for d/l→` can be recast in the form of a powe
law, i.e.,

f t~d/l!→a1b~d/l!c. ~5.12!

Whereas both amplitudesa and b depend onv/l, the uni-
versal exponentc is independent ofv/l and given by

c5
3

2

n12

n18
«2~222z!1O~«2!. ~5.13!

Perpendicular correlations are obtained whenr moves
into the bulk, whiler 8 remains close to the surface, i.e.,d
→` with d8 fixed ~see Fig. 1!. Equations~5.4! and ~5.11!–
~5.13! then imply that the correlations decay as

^F i~r !F i~r 8!&;
1

dd221h'
1

a

dd221h̄'
~5.14!

where the first term corresponds to a flat surface withh'

512 1
2 @(n12)/(n18)#«1O(«2) @1,2#. The second term

describes the effect of self-affine roughness, with an am
tude a depending onv, l, and z, and the new universa
exponent

h̃'5h'2c5~222z!1122
n12

n18
«1O~«2!.

~5.15!

Similarly, when both points remain close to the surface, i
r5ur i2r i8u→` with d and d8 fixed, the correlations deca
as

^F i~r !F i~r 8!&;
1

rd221h i
1

a8

rd221h̃ i
. ~5.16!

FIG. 2. ~a! Representation of the full Gaussian propaga
G(r ;r 8) in Eq. ~2.3! and its expansion up to second order inh(x)
according to Eqs.~2.21!–~2.23!. The number of ticks correspond
to the order inh(x). ~b! The second order inh(x) contribution to
the one-loop integral in Eq.~5.2! decomposes into several part
The dashed lines connecting the ticks indicate averaging over
ferent surface profiles, using Eq.~4.2!. The cross corresponds to th
surface operatorF'.
1-7
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In this case the flat surface is governed byh i522@(n
12)/(n18)#«1O(«2), while self-affine roughness gives

h̃ i5~222z!1224
n12

n18
«1O~«2!. ~5.17!

The corrections due to roughness now decay with a slo
power as compared to the Gaussian case. Indeed, for a
ficiently large roughness exponentz, these corrections ca
even dominate the result for the flat surface. The border
roughness exponent isz'

* 512 3
4 @(n12)/(n18)#«1O(«2)

for perpendicular, and a different value ofz i* 512 3
2 @(n

12)/(n18)#«1O(«2) for parallel correlations. This is a
surprising result from a naive point of view since, due toz
,1, on larger and larger length scales a self-affine rou
surface looks more and more like a flat surface. Note that
effect becomes only visible beyond the Gaussian approxi
tion, which corresponds to«50. By setting «51 in the
above expressions, one obtains the corresponding estim
for d53.

VI. TWO-DIMENSIONAL XY MODEL

To compare the results of the preceding section wit
different interacting theory, we examine the correlations fo
two-dimensionalXY model below the Kosterlitz-Thoules
temperature@40#. The order parameter in this system is t
spin variables(r )5eiu(r ), whereu(r ) is the angle~phase!
the spin makes with some reference axis. Even though
phase fluctuations are described by a Gaussian model,
trivial spin-spin correlations are obtained. Below t
Kosterlitz-Thouless temperature, thed52 dimensionalXY
model is well described by the spin-wave Hamiltonian~ne-
glecting vortices! @41#

bH$u%5 1
2 KE d2r ~“u!2, ~6.1!

wherer 5(x,y). Correlation functions decay as power law
in this system. For instance, the two-point correlation fu
tion in the unbounded plane is given by@41,42#

Gb~r ,r 8!5^eiu~r !e2 iu~r 8!&

5exp@Gb~r ;r 8!2 1
2 Gb~r ;r !2 1

2 Gb~r 8;r 8!#

~6.2!

with

Gb~r ;r 8!5^u~r !u~r 8!&52
1

2pK
ln~r /a!, ~6.3!

wherer 5ur 2r 8u anda is some lattice cutoff. This implies

Gb~r ;r 8!5S r

aD 2h

, ~6.4!

whereh51/(2pK).
If the plane is bounded by a free surface~line! at y50, the

correlation functionG(r ,r 8) in the half-spacey.0 is given
04612
er
uf-

e

h
is
a-

tes

a
a

he
n-

-

by similar expressions as in Eq.~6.2!, where nowG(r ,r 8)
satisfies the Neumann boundary condition at the surface@42#.
The final result

G~x,y;x8,y8!

;F @~x2x8!21~y2y8!2#@~x2x8!21~y1y8!2#

4yy8 G2h/2

~6.5!

implies the surface critical exponentsh i52h andh'5 3
2 h,

which fulfill the scaling relation 2h'2h i5h familiar from
the surface critical behavior ofn-vector models@1,2#.

In order to study whether the nontrivial roughness dep
dence of correlations obtained in the preceding section
also present here, we now consider a deformed surface~line!
with the same boundary conditions as above. Similar step
outlined in Appendix A lead to the result for the two-poi
correlation function

G~r ;r 8!5exp@G~r ;r 8!2 1
2 G~r ;r !2 1

2 G~r 8;r 8!# ~6.6!

with

G~r ;r 8!5Gb~r ;r 8!2E dxE dx8]nGb„r ;X~x!…M~x,x8!

3]n8Gb„r 8;X~x8!…, ~6.7!

where ]n denotes the normal derivative acting onX, and
M(x,x8) is the functional inverse of]n]n8Gb„X(x),X(x8)….
As in Sec. II, we use the representationX(x)5„x,h(x)… in
terms of the height profileh(x), and expandG(r ;r 8) up to
second order inh. In particular, for a self-affinely rough sur
face, we find, using Eq.~4.1!, that the surface correlation
fall off with the simple relative factor ofr 22(12z) as com-
pared to a flat surface~line! ~compare Sec. IV!. We attribute
this to the Gaussian nature of the fluctuations in the ph
angleu(r ), which are retained in the asymptotics of corr
lations fors(r ).

VII. CONCLUSION AND OUTLOOK

We have developed a path-integral formulation for t
study of correlation functions in a system that is confined
deformed or rough surfaces. Our results are generic for
system with long-ranged correlations. Examples include s
tems with a broken continuous symmetry, such as theXY
model below the Kosterlitz-Thouless temperature, or a ne
atic liquid crystal, where the correlations are generated
the corresponding massless Goldstone modes; or critical
ids or magnets described by then-vector model at the bulk
critical point, which has been mostly considered in this wo
The surface deformations can consist of specifically
signed, regular patterns, or represent a self-affinely ro
surface. Some conclusions and possible extensions of
paper are listed below.

~i! Thermodynamic surface quantities. Thermodynamic
quantities can be obtained from derivatives of the free ene
with respect to magnetic fields. To discuss surface behav
1-8
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TABLE I. Scaling relations between critical exponents relevant to a rough surface, as derived from
~7.1! and~7.2!, in terms of the bulk critical exponentsh, n, yb5D/n, and the roughness exponentz. For each
exponent in the left column there is a corresponding exponent for a flat surface@1,2# that would be denoted
without tilde ~compare with Table III in Ref.@2#!.

Critical exponent Conditions Scaling relation

h̃' ,h̃ i @Eqs.~5.14! and ~5.16!# t5hb5hs50 2h̃'2h̃ i5h1222z
ỹs @Eq. ~7.1!# tÞ0, hsÞ0 ỹs5

1
2 (d2h̃ i1222z)

x̃1;utu2g̃1 tÞ0 hb5hs50 g̃15n(22h̃')

x̃11;utu2g̃11 tÞ0 hb5hs50 g̃115n(12h̃ i)

m̃1;(2t) b̃1 t,0 hb5hs50
b̃15

n

2
~d221h̃i1222z!

m̃1;uhbu1/d̃1 t5hs50, hbÞ0 d̃15nyb /b̃1

m̃1;uhsu1/d̃11 t5hb50, hsÞ0 d̃115n ȳs /b̃1
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we introduce distinct fieldshb andhs in the bulk and close to
the surface, respectively. Assuming that our underlying
sumption of the validity of an expansion inh(x) holds, the
results for the two-point correlation function are consist
with the following form for the scaling of the leading singu
lar part of the surface free energy per projected area:

f s
~sing!5j2d11@gs~hbjyb,hsj

ys!1j22~12z!gr~hbjyb,hsj
ỹs!#,
~7.1!

wherej;uT2Tcu2n is the correlation length that diverges
the critical point. The first term in square brackets cor
sponds to a flat surface, withyb and ys describing the rel-
evance of bulk and surface fields, respectively@1,2#. The
second term gives the effect of surface roughness, w
j22(12z) reflecting the average increase in area.

By taking derivatives of Eq.~7.1!, one can derive scaling
relations between various surface critical exponents, in c
plete analogy to the case of a flat surface@1,2#. In the fol-
lowing we focus on the contributions generated by the s
face roughness, which according to Eq.~7.1! appear in
addition to the corresponding contributions for a flat surfac
For example, the singular part of thesurface magnetization,
2] f s

(sing)/]hs , can be written asm11m̄1 so that x̃1

5]m̃1 /]hb andx̃115]m̃1 /]hs represent the contributions t
the local susceptibilityand thelayer susceptibilitygenerated
by the surface roughness, respectively. Similarly, we supp
that the singular part of the two-point correlation functi
near the surface can be written asG(r ;r 8)1G̃(r ;r 8), and
G̃(r ;r 8) behaves forhb5hs50 as

G̃~r ;r 8!;H ur 2r 8u2~d221h̃ i !G i~ ur 2r 8u/j!, q50,

ur 2r 8u2~d221h̃'!G'~ ur 2r 8u/z,q!, q.0,
~7.2!

whereq is the angler 2r 8 makes with the surface, andG'

vanishes forq→0. Equations~7.1! and~7.2! then imply the
scaling relations between various critical exponents rela
to a rough surface shown in Table I.

Equations~5.15! and ~5.17! for the n-vector model are
consistent with the scaling relation forh̃ i and h̃' shown in
04612
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Table I. However, to regain the results in Eqs.~5.14!–~5.17!,
we have to use a value ofỹs511@3n/2(n18)#«1O(«2) in
Eq. ~7.1!, which is different from ys512@3/(n18)#«
1O(«2). To motivate and justify this difference, we resort
an analogy in which the rough surface is replaced with
collection of edges with a~possibly scale-dependent! distri-
bution of opening angles. Already for a single edge, desc
ing correlations requires a distinct and angle-dependent v
of ye for the magnetic field close to the edge@43,44#. Simi-
larly, results obtained recently for correlations in the vicin
of a fractal surface with fractal dimensiondf @22,23# cannot
be obtained using the value ofys for a flat surface@with j2df

replacingj2d11 in Eq. ~7.1! and omitting the second term i
square brackets#. Thus ỹs can be regarded as inherently r
lated to self-affine geometry. Interestingly, however,ỹs itself
does not depend on the roughness exponentz, at least to
order«.

~ii ! Higher orders of the perturbation theory. As the pre-
vious remark already indicates, higher order results in« are
necessary in order to check the generality of our results
then-vector model. For the contributions up to second ord
in h(x) ~as considered here!, we expect a systematic expan
sion in powers of«, and one can calculate theO(«2) contri-
butions of, e.g.,f' andc in Eq. ~5.12!. All the information
needed about the self-affinely rough surface is containe
Eq. ~4.2!. However, it is not clear how the perturbative ca
culation in h(x), for a self-affinely rough surface, can b
generalized to higher orders than the second. Such an
tempt would require, in addition to Eq.~4.2!, the knowledge
of stochastic averages of three and more fieldsh(x), which
can also introduce new length scales. Regarding these
stacles, it would be desirable to complement our results w
a nonperturbative approach, e.g., for the two-dimensio
Ising model bounded by a self-affinely rough boundary.

~iii ! Multiscaling. For a random fractal boundary, it ha
been shown@23# that correlation functions exhibit multisca
ing, which means that the average~over fractal realizations
of the boundary with given fractal dimensiondf! of their nth
power does not scale in the same way as thenth power of
their average. It would be interesting to see if similar beh
ior also applies to self-affine rough boundaries.
1-9
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APPENDIX A: PATH INTEGRAL FORMULATION FOR
CORRELATION FUNCTIONS

In this appendix we introduce a method to evaluate c
relation functions of a fluctuating field subject to bounda
conditions at surfaces of arbitrary shape. We consider a
lar field F described by the Gaussian action

S$F%5E ddr F1

2
~“F!21

t0

2
F2G , ~A1!

corresponding to Eq.~2.1! with u050. In order to study the
behavior of correlation functions for cases where more t
one boundary surface is present, we considerN manifolds
~objects! Va with a51,...,N. Each point on the manifoldVa

is represented by a vectorXa(y)5@Xa
m(y);m51,...,d#. As-

suming the Dirichlet boundary conditionF50 on the mani-
folds, a general correlation function with respect to the
tion ~A1! can be written as

^¯&5
1

Z0
E DF~r ! )

a51

N

)
Xa

d„F~Xa!…¯ e2S$F%,

~A2!

where

Z05E DF~r ! )
a51

N

)
Xa

d~F~Xa!!e2S$F%. ~A3!

Correlation functions ofF can then be deduced from th
generating functional

Z$J%5 K expF E ddrJ~r !F~r !G L , ~A4!

which is normalized such thatZ$0%51.
Following Refs.@32,33#, we now express for each man

fold Va the boundary condition enforcing function
PXa

d„F(Xa)… in terms of an auxiliary fieldCa(Xa) as

)
Xa

d„F~Xa!…

[E DCa~Xa!expF i E
Va

dXaCa~Xa!F~Xa!G .
~A5!

The Gaussian integration overF in Eqs.~A2! and ~A3! can
be performed, resulting in
04612
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Z$J%5constZb$J%E )
a51

N

DCa~Xa!e2S̃eff$C,J%, ~A6!

where

Zb$J%5expF 1
2 E ddr E ddr 8J~r !Gb~r ,r 8!J~r 8!G ~A7!

with the bulk two-point correlation functionGb(r ,r 8) corre-
sponding to the action~A1!. The effective actionS̃eff is given
by

S̃eff$C,J%5 1
2 (

ab
E

Va

dXaE
Vb

dXbCa~Xa!Gb~Xa ,Xb!

3Cb~Xb!2 i(
a

E ddr E
Va

dXaJ~r !

3Gb~r ,Xa!Ca~Xa!. ~A8!

Note that evaluation of Eq.~A6! requires functional integra
tion over the curved manifoldsVa . This is facilitated by
expressing the functional measure*DCa(Xa) in terms of
the local coordinatesy, which itself comprise a flat manifold
~the local coordinate system!. To this end we introduce the
new fieldsca(y)[Ca@Xa(y)#. However, this transforma
tion requires some care regarding the integration mea
*Va

dXa in Eq. ~A8! as well as the functional measur

*DCa(Xa) in Eq. ~A6!. The result is@45#

E )
a

DCa~Xa!e2S̃eff$C,J%5E )
a

Dfa~y!e2Seff$f,J%,

~A9!

where the fieldfa(y)[@ga(y)#1/4ca(y) is given for each
manifold Va in terms of the determinantga(y) of its in-
duced metric,

ga,i j ~y!5 (
m,n51

d ]Xa
m

]yi

]Xa
n

]yj
. ~A10!

The new effective actionSeff is given by

Seff$f,J%5 1
2 (

ab
E dDyE dDy8fa~y!Aab~y,y8!fb~y8!

2 i(
a

E ddr E dDyJ~r !va~r ,y!fa~y!

~A11!

with the kernels

Aab~y,y8!5@ga~y!#1/4Gb„Xa~y!,Xb~y8!…@gb~y8!#1/4,
~A12a!

va~r ,y!5Gb„r ,Xa~y!…@ga~y!#1/4. ~A12b!
1-10



f
ld
p

f

e

s

o
or

hi
n
al

i-

d

ch

r

on

e

g.
r,
the
ical

ed

S

t-

-

CORRELATION FUNCTIONS NEAR MODULATED AND . . . PHYSICAL REVIEW E65 046121
The functional measure*Dfa(y) on the right hand side o
Eq. ~A9! is the one conventionally used on a flat manifo
The corresponding Gaussian integrations can thus be
formed, resulting in

Z$J%5Zb$J%expF2 1
2 E ddr E ddr 8J~r !K~r ,r 8!J~r 8!G

~A13!

with the kernel

K~r ,r 8!5(
ab

E dDyE dDy8va~r ,y!Aab
21~y,y8!vb~r 8,y8!.

~A14!

Using Aab
21(y,y8)5@ga(y)#21/4Mab(y,y8)@gb(y8)#21/4,

where Mab(y,y8) is the functional inverse o
Gb„Xa(y),Xb(y8)… ~with respect to bothy, y8 and the indices
a, b!, one finds that the factors of@ga(y)#1/4 in Eq. ~A14!
cancel. From Eqs.~A12!–~A14! one can thus read off th
final result for the two-point correlation function,

G~r ,r 8!5Gb~r ,r 8!2 (
a,b51

N E dDyE dDy8Gb„r ,Xa~y!…

3Mab~y,y8!Gb„r 8,Xb~y8!…. ~A15!

ChoosingN51, corresponding to only one manifold, give
Eq. ~2.3!.

APPENDIX B: SHORT DISTANCE EXPANSION OF THE
STRESS TENSOR

In this appendix we consider the expansion of the tw
point correlation function for a general massless field the
described by a HamiltonianH$F%, to first order in the defor-
mations of the height profile of a bounding surface. To t
end, we introduce a new type of short-distance expansio
the stress tensor near a surface with the following sc
invariant boundary conditions:~a! the Dirichlet boundary
condition F50 corresponding to the ordinary surface un
versality class, and~b! the boundary conditionF5` de-
scribing critical adsorption, corresponding to the extraor
nary universality class.

A deformed surfaceS given by the height profileh(x)
~see Fig. 1! can be obtained from the flat surfaceS0 with
h(x)50 by means of a coordinate transformation, whi
maps the space (x,z) on the space (x̂,ẑ). We define this
transformation by

x̂5x, ẑ5z1h~x!Q~z!, ~B1!

where Q(z) is an arbitrary differentiable function with
Q(z)51 for z<z0 with somez0.0, and which vanishes fo
z→`. We denote the Hamiltonian with the flat surfaceS0 by
H and the Hamiltonian with a deformed surfaceS by Ĥ.
According to the definition of the stress tensorTik @46–48#
the change ofH generated by the coordinate transformati
~B1! can be written as
04612
.
er-

-
y

s
of
e-

i-

Ĥ2H52E
HS

ddr (
k51

d F ]

]r k
@h~x!Q~z!#GTzk~r !1O~h2!,

~B2!

where HS denotes the half-spacer 5(x,z) with z>0. Using
the propertySk]kTik50 and the divergence theorem, on
obtains

Ĥ5H1E
RD

dDxh~x!Tzz~x,z50!1O~h2!. ~B3!

The contribution to first order inh is locatedat the ~flat!
surface and does not depend on the specific choice ofQ(z).
The higher order contributionsO(h2) cannot be transformed
in this way, and will not be addressed in the followin
Tzz(x,0)5 limd→0 Tzz(x,d) represents a surface operato
which does not, however, need to be renormalized at
surface, so that its scaling dimension equals its canon
inverse length dimension ofd @49,50#.

In the following we consider the cumulant^F(r )F(r 8)&C

of the two-point correlation function in the system describ
by H$F% above the deformed surfaceS. Using Eq.~B3! one
finds

^F~r !F~r 8!&C5^F~r !F~r 8!&0
C2E dDxh~x!

3^Tzz~x,0!F~r !F~r 8!&0
C1O~h2!,

~B4!

where ^ &0
C denotes the cumulant within the half-space H

bounded by the flat surfaceS0 . We now consider the limit
r5ur i2r i8u→` ~see Fig. 1!, so that we can use the shor
distance expansion~SDE! of the order parameterF(r ) near
the surface. For the first term̂F(r )F(r 8)&0

C in Eq. ~B4!, the
SDE is well known:~a! for the Dirichlet boundary condition
F50, the SDE is given by@1,2#

F~r i ,z!5az~h i2h!/2
]

]z
F~r i ,z!uz501¯ , ~B5a!

where ]zF(r i ,z50) is a surface operator,h i is a surface
critical exponent, anda is a nonuniversal amplitude;~b! for
the boundary conditionF5`, the SDE has the form@49,50#

F~r i ,z!

^F~r i ,z!&0
5I 1bTzdTzz~r i ,z50!1¯ , ~B5b!

where ^F(r i ,z)&0 is taken at the critical point of the field
theory, andI is the identity operator. The amplitudebT is
universal. Equation~B5! in conjunction with the scaling be
havior ^F(r )F(r 8)&0

C;r2(d221h) f (z/r,z8/r) @1,2# gives
the result for a flat surface

^F~r !F~r 8!&0
C;~zz8!~h i2h!/2r2~d221h i !, r→`.

~B6!

For boundary condition~b!, one hash i5d12 @49,50#, and
the propertŷ Tzz&50 has been used.
1-11
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For the second term*dDxh(x)^Tzz(x,0)F(r )F(r 8)&0
C on

the right hand side~rhs! of Eq. ~B4!, the above procedure
cannot be applied directly because the integration ofTzz(x,0)
separates the pointsr andr 8 from the surface. To proceed,
is illustrative to consider first the case of aconstantheight
field h(x)5h0 . In this case, the integration ofTzz(x,0) sim-
ply amounts to a surface shift in the form@51#

h0E dDx^Tzz~x,0!F~r !F~r 8!&0
C

5h0S ]

]z
1

]

]z8D ^F~r !F~r 8!&0
C . ~B7!

Consider for illustration the case for which onlyr 5(r i ,z) is
close to the surface, i.e.,z!z8. Since ^F(r )F(r 8)&0

C for
smallz behaves like a power inz, thez derivative on the rhs
of Eq. ~B7! is larger than thez8 derivative by an amount o
order z8/z. Now we recall that for the boundary condition
~a! and ~b!, correlations near the surface aresuppressed, so
that one can expect that on the left hand side of Eq.~B7!
actually only a small integration region aroundr i contributes
to the z derivative on the rhs. This suggests the opera
product expansion

Tzz~x,0!F~r i ,z!5D~x2r i ,z!
]

]z
F~r i ,z!1¯ ~B8!

for ~x, 0! close tor 5(r i ,z), whereD(x,z) is a representa
tion of the delta functiondD(x) in D dimensions, i.e.,

E dDxD~x,z!51, lim
z→0

D~x,z!5dD~x!. ~B9!

Note that]zF(r i ,z) on the rhs of Eq.~B8! is not a surface
operator, since thez derivative is taken at a distancez.0
from the surface. The validity of Eq.~B8! can be verified for
various cases. For two-dimensional systems at critica
bounded by a line with the boundary condition~a! or ~b!, it
follows from the local form of the conformal Ward Identit
@42#. For the Gaussian model with the boundary condit
~a!, it can easily be verified for any dimensiond. For aF4

model at criticality with boundary condition~b!, Eq. ~B8! is
consistent with the form of̂Tzz(x,0)F(r i ,z)&0 known from
conformal invariance arguments for anyd with 2<d<4
@49,50#. For this system we have checked Eq.~B8! also for
the correlation function^w(r )w(r 8)&0 with w(r )5F(r )
2^F(r )& @50# to first ~one loop! order in theF4 interaction.

Let us go back to*dDxh(x)^Tzz(x,0)F(r )F(r 8)&0
C on

the rhs of Eq.~B4! with z andz8 fixed. In order to obtain its
leading behavior forr→`, thex integration can be divided
in two regions. Within one region,x is far away from bothr i

andr i8 . Hence Eq.~B5! can be applied to both pointsr i and
r i8 . Within the complement region,x is either close tor i or
to r i8 so that Eq.~B8! can be used. Due to thez derivative in
Eq. ~B8! in conjunction with the scaling behavior quote
below Eq. ~B5!, the contribution arising from the secon
integration region is by a factorr/z or r/z8 larger than the
contribution from the first integration region. Using Eq.~B6!,
04612
r

y

n

we conclude that the leading contribution forr→` of the
second term on the rhs of Eq.~B4! is given by @A(r )
1A(r 8)#^F(r )F(r 8)&0

C with the amplitudeA(r ) in Eq.
~2.12!. Thus we obtain the leading scaling behavior
^F(r )F(r 8)&C for r→` quoted in Eq.~2.11!.

APPENDIX C: STRUCTURE OF THE LOOP EXPANSION

We consider the diagrams on the right hand side of F
2~b!. According to Eq.~5.2!, in the (p,d) representation, the
distancesd0 of the F4 vertices@dots in Fig. 2~b!# from the
surface have to be integrated using*0

`dd0 . To one loop or-
der, only the three diagrams in the first line of Fig. 2~b!
exhibit short-distance singularities atd050. These diagrams
consist of the following components:

~C1!

~C2!

~C3!

~C4!

with the constantV5]K(p,d)/]dud50 .

~C5!

with the constant

A52E dDa

~2p!D

1

2a
e22a, ~C6!

~C7!

where the functionF1(d0) is regular ford0→0. The constant
B is given by

B5D21E dDa

~2p!D @Ũ0~a!e22a22Ũ~a!e2a#, ~C8!

where Ũ0(pd)5U(p,0)/d and Ũ(pd)5Ũ(p,d)/d, with
U(p,d) from Eq. ~4.6!. Note that in Eq.~C7! the terms in
square brackets in Eq.~4.4!, which correspond to the firs
line in Eq. ~2.23!, do not contribute.

Writing A5A01«A11O(«2) andB5B01«B11O(«2)
with «542d, one finds thatA05B0 . This nontrivial fact is
the reason why the 1/« poles due to the short-distance sing
larities of the first and the third diagram in the first line
Fig. 2~b! cancel each other. The second diagram can be w
ten asA@1/«2CE2 ln(p)# 1F2(p,d), with Euler’s
constantCE and a pole-free functionF2(p,d). The 1/« pole
in this expression is then removed by the factorZ1

21/2, with
1-12
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Z1 from Eq. ~5.8!, that multiplies the zero-loop contributio
- of the correlation function. The remaining, regul

contributions, including those from the diagrams in the s
ond line of Fig. 2~b!, contain additional logarithmic terms i
d which are not present if the surface was flat. One can t
identify these logarithmic contributions, and show that th
can be recast in the power law according to Eqs.~5.11!–
~5.13!. It should be noted, however, that here this expon
a

e

s:

, B

J.

.

.

.

te

04612
-

n
y

-

tiation is not entirely based on an RG argument, but relies
the plausible assumption that the self-affine structure of
surface should result in pure power laws~without logarith-
mic corrections! for the decay of correlation functions.

An analogous calculation leads to the quoted results
lateral correlations. Since in this case both points are loca
near the surface, only four of the six diagrams in Fig. 2~b!
are different from each other.
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